text_classification_dnn.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import paddle.v2 as paddle
import gzip


def fc_net(input_dim, class_dim=2, emb_dim=256):
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))

    emb = paddle.layer.embedding(input=data, size=emb_dim)
    seq_pool = paddle.layer.pooling(
        input=emb, pooling_type=paddle.pooling.Max())

    hd1 = paddle.layer.fc(
        input=seq_pool,
        size=128,
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=0.01))
    hd2 = paddle.layer.fc(
        input=hd1,
        size=32,
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=0.01))

    output = paddle.layer.fc(
        input=hd2,
        size=class_dim,
        act=paddle.activation.Softmax(),
        param_attr=paddle.attr.Param(initial_std=0.1))

    cost = paddle.layer.classification_cost(input=output, label=lbl)

    return cost, output


def train_dnn_model(num_pass):
    # load word dictionary
    print 'load dictionary...'
    word_dict = paddle.dataset.imdb.word_dict()

    dict_dim = len(word_dict)
    class_dim = 2
    # define data reader
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
        batch_size=100)
    test_reader = paddle.batch(
        lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)

    # network config
    [cost, _] = fc_net(dict_dim, class_dim=class_dim)
    # create parameters
    parameters = paddle.parameters.create(cost)
    # create optimizer
    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=2e-3,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5))

    # create trainer
    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=adam_optimizer)

    # Define end batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(reader=test_reader, feeding=feeding)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
            with gzip.open("dnn_params.tar.gz", 'w') as f:
                parameters.to_tar(f)

    # begin training network
    feeding = {'word': 0, 'label': 1}
    trainer.train(
        reader=train_reader,
        event_handler=event_handler,
        feeding=feeding,
        num_passes=num_pass)

    print("Training finished.")


def dnn_infer():
    print("Begin to predict...")

    word_dict = paddle.dataset.imdb.word_dict()
    dict_dim = len(word_dict)
    class_dim = 2

    [_, output] = fc_net(dict_dim, class_dim=class_dim)
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open("dnn_params.tar.gz"))

    infer_data = []
    infer_label_data = []
    infer_data_num = 100
    for item in paddle.dataset.imdb.test(word_dict):
        infer_data.append([item[0]])
        infer_label_data.append(item[1])
        if len(infer_data) == infer_data_num:
            break

    predictions = paddle.infer(
        output_layer=output,
        parameters=parameters,
        input=infer_data,
        field=['value'])
    for i, prob in enumerate(predictions):
        print prob, infer_label_data[i]


if __name__ == "__main__":
    paddle.init(use_gpu=False, trainer_count=4)
    train_dnn_model(2)
    dnn_infer()