提交 ac67d5aa 编写于 作者: F fengjiayi

add commits in cnn net

上级 55dc1a38
...@@ -34,7 +34,7 @@ def fc_net(input_dim, class_dim=2, emb_dim=256): ...@@ -34,7 +34,7 @@ def fc_net(input_dim, class_dim=2, emb_dim=256):
paddle.data_type.integer_value_sequence(input_dim)) paddle.data_type.integer_value_sequence(input_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim)) lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))
# emdedding layer # embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim) emb = paddle.layer.embedding(input=data, size=emb_dim)
# max pooling # max pooling
seq_pool = paddle.layer.pooling( seq_pool = paddle.layer.pooling(
...@@ -93,15 +93,21 @@ def fc_net(input_dim, class_dim=2, emb_dim=256): ...@@ -93,15 +93,21 @@ def fc_net(input_dim, class_dim=2, emb_dim=256):
import paddle.v2 as paddle import paddle.v2 as paddle
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128): def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
# input layers
data = paddle.layer.data("word", data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(input_dim)) paddle.data_type.integer_value_sequence(input_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2)) lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
#embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim) emb = paddle.layer.embedding(input=data, size=emb_dim)
# convolution layers with max pooling
conv_3 = paddle.networks.sequence_conv_pool( conv_3 = paddle.networks.sequence_conv_pool(
input=emb, context_len=3, hidden_size=hid_dim) input=emb, context_len=3, hidden_size=hid_dim)
conv_4 = paddle.networks.sequence_conv_pool( conv_4 = paddle.networks.sequence_conv_pool(
input=emb, context_len=4, hidden_size=hid_dim) input=emb, context_len=4, hidden_size=hid_dim)
# fc and output layer
output = paddle.layer.fc( output = paddle.layer.fc(
input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax()) input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())
......
...@@ -18,15 +18,21 @@ import gzip ...@@ -18,15 +18,21 @@ import gzip
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128): def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
# input layers
data = paddle.layer.data("word", data = paddle.layer.data("word",
paddle.data_type.integer_value_sequence(input_dim)) paddle.data_type.integer_value_sequence(input_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(2)) lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
#embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim) emb = paddle.layer.embedding(input=data, size=emb_dim)
# convolution layers with max pooling
conv_3 = paddle.networks.sequence_conv_pool( conv_3 = paddle.networks.sequence_conv_pool(
input=emb, context_len=3, hidden_size=hid_dim) input=emb, context_len=3, hidden_size=hid_dim)
conv_4 = paddle.networks.sequence_conv_pool( conv_4 = paddle.networks.sequence_conv_pool(
input=emb, context_len=4, hidden_size=hid_dim) input=emb, context_len=4, hidden_size=hid_dim)
# fc and output layer
output = paddle.layer.fc( output = paddle.layer.fc(
input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax()) input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())
......
...@@ -23,7 +23,7 @@ def fc_net(input_dim, class_dim=2, emb_dim=256): ...@@ -23,7 +23,7 @@ def fc_net(input_dim, class_dim=2, emb_dim=256):
paddle.data_type.integer_value_sequence(input_dim)) paddle.data_type.integer_value_sequence(input_dim))
lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim)) lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))
# emdedding layer # embedding layer
emb = paddle.layer.embedding(input=data, size=emb_dim) emb = paddle.layer.embedding(input=data, size=emb_dim)
# max pooling # max pooling
seq_pool = paddle.layer.pooling( seq_pool = paddle.layer.pooling(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册