yolov3.py 19.7 KB
Newer Older
Y
Yang Zhang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
Y
Yang Zhang 已提交
16
from __future__ import print_function
Y
Yang Zhang 已提交
17 18 19 20 21 22 23

import argparse
import contextlib
import os
import random
import time

Y
Yang Zhang 已提交
24 25
from functools import partial

Y
Yang Zhang 已提交
26 27 28 29 30 31 32 33 34 35
import cv2
import numpy as np
from pycocotools.coco import COCO

import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.regularizer import L2Decay

D
dengkaipeng 已提交
36
from model import Model, Loss, Input
Y
Yang Zhang 已提交
37
from resnet import ResNet, ConvBNLayer
D
dengkaipeng 已提交
38 39 40 41 42

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
Y
Yang Zhang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109


# XXX transfer learning
class ResNetBackBone(ResNet):
    def __init__(self, depth=50):
        super(ResNetBackBone, self).__init__(depth=depth)
        delattr(self, 'fc')

    def forward(self, inputs):
        x = self.conv(inputs)
        x = self.pool(x)
        outputs = []
        for layer in self.layers:
            x = layer(x)
            outputs.append(x)
        return outputs


class YoloDetectionBlock(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters):
        super(YoloDetectionBlock, self).__init__()

        assert num_filters % 2 == 0, \
            "num_filters {} cannot be divided by 2".format(num_filters)

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='leaky_relu')
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 2,
            filter_size=3,
            act='leaky_relu')
        self.conv2 = ConvBNLayer(
            num_channels=num_filters * 2,
            num_filters=num_filters,
            filter_size=1,
            act='leaky_relu')
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 2,
            filter_size=3,
            act='leaky_relu')
        self.route = ConvBNLayer(
            num_channels=num_filters * 2,
            num_filters=num_filters,
            filter_size=1,
            act='leaky_relu')
        self.tip = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 2,
            filter_size=3,
            act='leaky_relu')

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = self.conv1(out)
        out = self.conv2(out)
        out = self.conv3(out)
        route = self.route(out)
        tip = self.tip(route)
        return route, tip


class YOLOv3(Model):
D
dengkaipeng 已提交
110
    def __init__(self, num_classes=80):
Y
Yang Zhang 已提交
111
        super(YOLOv3, self).__init__()
D
dengkaipeng 已提交
112
        self.num_classes = num_classes
Y
Yang Zhang 已提交
113 114 115 116
        self.anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45,
                        59, 119, 116, 90, 156, 198, 373, 326]
        self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
        self.valid_thresh = 0.005
D
dengkaipeng 已提交
117
        self.nms_thresh = 0.45
Y
Yang Zhang 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        self.nms_topk = 400
        self.nms_posk = 100
        self.draw_thresh = 0.5

        self.backbone = ResNetBackBone()
        self.block_outputs = []
        self.yolo_blocks = []
        self.route_blocks = []

        for idx, num_chan in enumerate([2048, 1280, 640]):
            yolo_block = self.add_sublayer(
                "detecton_block_{}".format(idx),
                YoloDetectionBlock(num_chan, num_filters=512 // (2**idx)))
            self.yolo_blocks.append(yolo_block)

            num_filters = len(self.anchor_masks[idx]) * (self.num_classes + 5)

            block_out = self.add_sublayer(
                "block_out_{}".format(idx),
                Conv2D(num_channels=1024 // (2**idx),
                       num_filters=num_filters,
                       filter_size=1,
                       param_attr=ParamAttr(
                           initializer=fluid.initializer.Normal(0., 0.02)),
                       bias_attr=ParamAttr(
                           initializer=fluid.initializer.Constant(0.0),
                           regularizer=L2Decay(0.))))
            self.block_outputs.append(block_out)
            if idx < 2:
                route = self.add_sublayer(
                    "route_{}".format(idx),
                    ConvBNLayer(num_channels=512 // (2**idx),
                                num_filters=256 // (2**idx),
                                filter_size=1,
                                act='leaky_relu'))
                self.route_blocks.append(route)

D
dengkaipeng 已提交
155
    def forward(self, inputs, img_info):
Y
Yang Zhang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168
        outputs = []
        boxes = []
        scores = []
        downsample = 32

        feats = self.backbone(inputs)
        feats = feats[::-1][:len(self.anchor_masks)]
        route = None
        for idx, feat in enumerate(feats):
            if idx > 0:
                feat = fluid.layers.concat(input=[route, feat], axis=1)
            route, tip = self.yolo_blocks[idx](feat)
            block_out = self.block_outputs[idx](tip)
D
dengkaipeng 已提交
169
            outputs.append(block_out)
Y
Yang Zhang 已提交
170 171 172 173 174

            if idx < 2:
                route = self.route_blocks[idx](route)
                route = fluid.layers.resize_nearest(route, scale=2)

175
            if self.mode == 'test':
D
dengkaipeng 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
                anchor_mask = self.anchor_masks[idx]
                mask_anchors = []
                for m in anchor_mask:
                    mask_anchors.append(self.anchors[2 * m])
                    mask_anchors.append(self.anchors[2 * m + 1])
                img_shape = fluid.layers.slice(img_info, axes=[1], starts=[1], ends=[3])
                img_id = fluid.layers.slice(img_info, axes=[1], starts=[0], ends=[1])
                b, s = fluid.layers.yolo_box(
                    x=block_out,
                    img_size=img_shape,
                    anchors=mask_anchors,
                    class_num=self.num_classes,
                    conf_thresh=self.valid_thresh,
                    downsample_ratio=downsample)

                boxes.append(b)
                scores.append(fluid.layers.transpose(s, perm=[0, 2, 1]))
Y
Yang Zhang 已提交
193 194 195

            downsample //= 2

196 197
        if self.mode != 'test':
            return outputs
Y
Yang Zhang 已提交
198

199
        return [img_id, fluid.layers.multiclass_nms(
Y
Yang Zhang 已提交
200 201 202 203 204 205
            bboxes=fluid.layers.concat(boxes, axis=1),
            scores=fluid.layers.concat(scores, axis=2),
            score_threshold=self.valid_thresh,
            nms_top_k=self.nms_topk,
            keep_top_k=self.nms_posk,
            nms_threshold=self.nms_thresh,
D
dengkaipeng 已提交
206
            background_label=-1)]
Y
Yang Zhang 已提交
207 208 209


class YoloLoss(Loss):
D
dengkaipeng 已提交
210
    def __init__(self, num_classes=80):
Y
Yang Zhang 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        super(YoloLoss, self).__init__()
        self.num_classes = num_classes
        self.ignore_thresh = 0.7
        self.anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45,
                        59, 119, 116, 90, 156, 198, 373, 326]
        self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

    def forward(self, outputs, labels):
        downsample = 32
        gt_box, gt_label, gt_score = labels
        losses = []

        for idx, out in enumerate(outputs):
            anchor_mask = self.anchor_masks[idx]
            loss = fluid.layers.yolov3_loss(
                x=out,
                gt_box=gt_box,
                gt_label=gt_label,
                gt_score=gt_score,
                anchor_mask=anchor_mask,
                downsample_ratio=downsample,
                anchors=self.anchors,
                class_num=self.num_classes,
                ignore_thresh=self.ignore_thresh,
                use_label_smooth=True)
D
dengkaipeng 已提交
236
            loss = fluid.layers.reduce_mean(loss)
Y
Yang Zhang 已提交
237 238 239 240 241 242
            losses.append(loss)
            downsample //= 2
        return losses


def make_optimizer(parameter_list=None):
Y
Yang Zhang 已提交
243
    base_lr = FLAGS.lr
Y
Yang Zhang 已提交
244 245 246
    warm_up_iter = 4000
    momentum = 0.9
    weight_decay = 5e-4
Y
Yang Zhang 已提交
247
    boundaries = [400000, 450000]
Y
Yang Zhang 已提交
248
    values = [base_lr * (0.1 ** i) for i in range(len(boundaries) + 1)]
Y
Yang Zhang 已提交
249
    learning_rate = fluid.layers.piecewise_decay(
Y
Yang Zhang 已提交
250 251
        boundaries=boundaries,
        values=values)
Y
Yang Zhang 已提交
252 253
    learning_rate = fluid.layers.linear_lr_warmup(
        learning_rate=learning_rate,
Y
Yang Zhang 已提交
254 255 256 257
        warmup_steps=warm_up_iter,
        start_lr=0.0,
        end_lr=base_lr)
    optimizer = fluid.optimizer.Momentum(
Y
Yang Zhang 已提交
258
        learning_rate=learning_rate,
Y
Yang Zhang 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
        regularization=fluid.regularizer.L2Decay(weight_decay),
        momentum=momentum,
        parameter_list=parameter_list)
    return optimizer


def _iou_matrix(a, b):
    tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2])
    br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
    area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2)
    area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
    area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
    area_o = (area_a[:, np.newaxis] + area_b - area_i)
    return area_i / (area_o + 1e-10)


def _crop_box_with_center_constraint(box, crop):
    cropped_box = box.copy()
    cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2])
    cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:])
    cropped_box[:, :2] -= crop[:2]
    cropped_box[:, 2:] -= crop[:2]
    centers = (box[:, :2] + box[:, 2:]) / 2
    valid = np.logical_and(
        crop[:2] <= centers, centers < crop[2:]).all(axis=1)
    valid = np.logical_and(
        valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
    return cropped_box, np.where(valid)[0]


def random_crop(inputs):
    aspect_ratios = [.5, 2.]
    thresholds = [.0, .1, .3, .5, .7, .9]
    scaling = [.3, 1.]

D
dengkaipeng 已提交
294
    img, img_ids, gt_box, gt_label = inputs
Y
Yang Zhang 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    h, w = img.shape[:2]

    if len(gt_box) == 0:
        return inputs

    np.random.shuffle(thresholds)
    for thresh in thresholds:
        found = False
        for i in range(50):
            scale = np.random.uniform(*scaling)
            min_ar, max_ar = aspect_ratios
            ar = np.random.uniform(max(min_ar, scale**2),
                                   min(max_ar, scale**-2))
            crop_h = int(h * scale / np.sqrt(ar))
            crop_w = int(w * scale * np.sqrt(ar))
            crop_y = np.random.randint(0, h - crop_h)
            crop_x = np.random.randint(0, w - crop_w)
            crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h]
            iou = _iou_matrix(gt_box, np.array([crop_box], dtype=np.float32))
            if iou.max() < thresh:
                continue

            cropped_box, valid_ids = _crop_box_with_center_constraint(
                gt_box, np.array(crop_box, dtype=np.float32))
            if valid_ids.size > 0:
                found = True
                break

        if found:
            x1, y1, x2, y2 = crop_box
            img = img[y1:y2, x1:x2, :]
            gt_box = np.take(cropped_box, valid_ids, axis=0)
            gt_label = np.take(gt_label, valid_ids, axis=0)
D
dengkaipeng 已提交
328
            return img, img_ids, gt_box, gt_label
Y
Yang Zhang 已提交
329 330 331 332 333 334 335

        return inputs


# XXX mix up, color distort and random expand are skipped for simplicity
def sample_transform(inputs, mode='train', num_max_boxes=50):
    if mode == 'train':
D
dengkaipeng 已提交
336
        img, img_id, gt_box, gt_label = random_crop(inputs)
Y
Yang Zhang 已提交
337
    else:
D
dengkaipeng 已提交
338
        img, img_id, gt_box, gt_label = inputs
Y
Yang Zhang 已提交
339 340 341 342 343 344 345 346 347 348 349 350

    h, w = img.shape[:2]
    # random flip
    if mode == 'train' and np.random.uniform(0., 1.) > .5:
        img = img[:, ::-1, :]
        if len(gt_box) > 0:
            swap = gt_box.copy()
            gt_box[:, 0] = w - swap[:, 2] - 1
            gt_box[:, 2] = w - swap[:, 0] - 1

    if len(gt_label) == 0:
        gt_box = np.zeros([num_max_boxes, 4], dtype=np.float32)
D
dengkaipeng 已提交
351
        gt_label = np.zeros([num_max_boxes], dtype=np.int32)
Y
Yang Zhang 已提交
352 353 354 355 356 357 358 359 360 361 362
        return img, gt_box, gt_label

    gt_box = gt_box[:num_max_boxes, :]
    gt_label = gt_label[:num_max_boxes, 0]
    # normalize boxes
    gt_box /= np.array([w, h] * 2, dtype=np.float32)
    gt_box[:, 2:] = gt_box[:, 2:] - gt_box[:, :2]
    gt_box[:, :2] = gt_box[:, :2] + gt_box[:, 2:] / 2.

    pad = num_max_boxes - gt_label.size
    gt_box = np.pad(gt_box, ((0, pad), (0, 0)), mode='constant')
D
dengkaipeng 已提交
363
    gt_label = np.pad(gt_label, ((0, pad)), mode='constant')
Y
Yang Zhang 已提交
364

D
dengkaipeng 已提交
365
    return img, img_id, gt_box, gt_label
Y
Yang Zhang 已提交
366 367 368 369 370 371 372 373 374 375 376


def batch_transform(batch, mode='train'):
    if mode == 'train':
        d = np.random.choice(
            [320, 352, 384, 416, 448, 480, 512, 544, 576, 608])
        interp = np.random.choice(range(5))
    else:
        d = 608
        interp = cv2.INTER_CUBIC
    # transpose batch
D
dengkaipeng 已提交
377 378
    imgs, img_ids, gt_boxes, gt_labels = list(zip(*batch))
    img_shapes = np.array([[im.shape[0], im.shape[1]] for im in imgs]).astype('int32')
Y
Yang Zhang 已提交
379 380 381 382 383 384 385 386 387 388 389 390
    imgs = np.array([cv2.resize(
        img, (d, d), interpolation=interp) for img in imgs])

    # transpose, permute and normalize
    imgs = imgs.astype(np.float32)[..., ::-1]
    mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
    std = np.array([58.395, 57.120, 57.375], dtype=np.float32)
    invstd = 1. / std
    imgs -= mean
    imgs *= invstd
    imgs = imgs.transpose((0, 3, 1, 2))

D
dengkaipeng 已提交
391 392
    img_ids = np.array(img_ids)
    img_info = np.concatenate([img_ids, img_shapes], axis=1)
Y
Yang Zhang 已提交
393 394
    gt_boxes = np.array(gt_boxes)
    gt_labels = np.array(gt_labels)
Y
Yang Zhang 已提交
395
    # XXX since mix up is not used, scores are all ones
Y
Yang Zhang 已提交
396
    gt_scores = np.ones_like(gt_labels, dtype=np.float32)
D
dengkaipeng 已提交
397
    return [imgs, img_info], [gt_boxes, gt_labels, gt_scores]
Y
Yang Zhang 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436


def coco2017(root_dir, mode='train'):
    json_path = os.path.join(
        root_dir, 'annotations/instances_{}2017.json'.format(mode))
    coco = COCO(json_path)
    img_ids = coco.getImgIds()
    imgs = coco.loadImgs(img_ids)
    class_map = {v: i + 1 for i, v in enumerate(coco.getCatIds())}
    samples = []

    for img in imgs:
        img_path = os.path.join(
            root_dir, '{}2017'.format(mode), img['file_name'])
        file_path = img_path
        width = img['width']
        height = img['height']
        ann_ids = coco.getAnnIds(imgIds=img['id'], iscrowd=False)
        anns = coco.loadAnns(ann_ids)

        gt_box = []
        gt_label = []

        for ann in anns:
            x1, y1, w, h = ann['bbox']
            x2 = x1 + w - 1
            y2 = y1 + h - 1
            x1 = np.clip(x1, 0, width - 1)
            x2 = np.clip(x2, 0, width - 1)
            y1 = np.clip(y1, 0, height - 1)
            y2 = np.clip(y2, 0, height - 1)
            if ann['area'] <= 0 or x2 < x1 or y2 < y1:
                continue
            gt_label.append(ann['category_id'])
            gt_box.append([x1, y1, x2, y2])

        gt_box = np.array(gt_box, dtype=np.float32)
        gt_label = np.array([class_map[cls] for cls in gt_label],
                            dtype=np.int32)[:, np.newaxis]
D
dengkaipeng 已提交
437
        im_id = np.array([img['id']], dtype=np.int32)
Y
Yang Zhang 已提交
438 439 440

        if gt_label.size == 0 and not mode == 'train':
            continue
D
dengkaipeng 已提交
441
        samples.append((file_path, im_id.copy(), gt_box.copy(), gt_label.copy()))
Y
Yang Zhang 已提交
442 443 444

    def iterator():
        if mode == 'train':
D
dengkaipeng 已提交
445 446
            np.random.shuffle(samples)
        for file_path, im_id, gt_box, gt_label in samples:
Y
Yang Zhang 已提交
447
            img = cv2.imread(file_path)
D
dengkaipeng 已提交
448
            yield img, im_id, gt_box, gt_label
Y
Yang Zhang 已提交
449 450 451 452 453 454

    return iterator


# XXX coco metrics not included for simplicity
def run(model, loader, mode='train'):
Y
Yang Zhang 已提交
455
    total_loss = 0.
Y
Yang Zhang 已提交
456 457 458
    total_time = 0.
    device_ids = list(range(FLAGS.num_devices))
    start = time.time()
Y
Yang Zhang 已提交
459

Y
Yang Zhang 已提交
460
    for idx, batch in enumerate(loader()):
D
dengkaipeng 已提交
461
        losses = getattr(model, mode)(batch[0], batch[1])
Y
Yang Zhang 已提交
462 463

        total_loss += np.sum(losses)
Y
Yang Zhang 已提交
464
        if idx > 1:  # skip first two steps
Y
Yang Zhang 已提交
465 466
            total_time += time.time() - start
        if idx % 10 == 0:
D
dengkaipeng 已提交
467
            logger.info("{:04d}: loss {:0.3f} time: {:0.3f}".format(
Y
Yang Zhang 已提交
468
                idx, total_loss / (idx + 1), total_time / max(1, (idx - 1))))
Y
Yang Zhang 已提交
469 470 471 472 473 474 475 476 477 478
        start = time.time()


def main():
    @contextlib.contextmanager
    def null_guard():
        yield

    epoch = FLAGS.epoch
    batch_size = FLAGS.batch_size
Y
Yang Zhang 已提交
479
    guard = fluid.dygraph.guard() if FLAGS.dynamic else null_guard()
Y
Yang Zhang 已提交
480 481

    train_loader = fluid.io.xmap_readers(
Y
Yang Zhang 已提交
482
        batch_transform,
Y
Yang Zhang 已提交
483 484
        paddle.batch(
            fluid.io.xmap_readers(
Y
Yang Zhang 已提交
485
                sample_transform,
Y
Yang Zhang 已提交
486 487 488 489 490 491 492
                coco2017(FLAGS.data, 'train'),
                process_num=8,
                buffer_size=4 * batch_size),
            batch_size=batch_size,
            drop_last=True),
        process_num=2, buffer_size=4)

Y
Yang Zhang 已提交
493 494 495
    val_sample_transform = partial(sample_transform, mode='val')
    val_batch_transform = partial(batch_transform, mode='val')

Y
Yang Zhang 已提交
496
    val_loader = fluid.io.xmap_readers(
Y
Yang Zhang 已提交
497
        val_batch_transform,
Y
Yang Zhang 已提交
498 499
        paddle.batch(
            fluid.io.xmap_readers(
Y
Yang Zhang 已提交
500
                val_sample_transform,
Y
Yang Zhang 已提交
501 502 503
                coco2017(FLAGS.data, 'val'),
                process_num=8,
                buffer_size=4 * batch_size),
D
dengkaipeng 已提交
504
            batch_size=1),
Y
Yang Zhang 已提交
505 506 507 508 509 510
        process_num=2, buffer_size=4)

    if not os.path.exists('yolo_checkpoints'):
        os.mkdir('yolo_checkpoints')

    with guard:
D
dengkaipeng 已提交
511 512
        NUM_CLASSES = 7
        NUM_MAX_BOXES = 50
D
dengkaipeng 已提交
513
        model = YOLOv3(num_classes=NUM_CLASSES)
Y
Yang Zhang 已提交
514
        # XXX transfer learning
D
dengkaipeng 已提交
515 516
        if FLAGS.pretrain_weights is not None:
            model.backbone.load(FLAGS.pretrain_weights)
Y
Yang Zhang 已提交
517
        if FLAGS.weights is not None:
D
dengkaipeng 已提交
518
            model.load(FLAGS.weights)
Y
Yang Zhang 已提交
519
        optim = make_optimizer(parameter_list=model.parameters())
D
dengkaipeng 已提交
520
        anno_path = os.path.join(FLAGS.data, 'annotations', 'instances_val2017.json')
D
dengkaipeng 已提交
521 522 523 524 525
        inputs = [Input([None, 3, None, None], 'float32', name='image'),
                  Input([None, 3], 'int32', name='img_info')]
        labels = [Input([None, NUM_MAX_BOXES, 4], 'float32', name='gt_bbox'),
                  Input([None, NUM_MAX_BOXES], 'int32', name='gt_label'),
                  Input([None, NUM_MAX_BOXES], 'float32', name='gt_score')]
D
dengkaipeng 已提交
526 527
        model.prepare(optim,
                      YoloLoss(num_classes=NUM_CLASSES),
528 529 530
                      # For YOLOv3, output variable in train/eval is different,
                      # which is not supported by metric, add by callback later?
                      # metrics=COCOMetric(anno_path, with_background=False)
D
dengkaipeng 已提交
531 532
                      inputs=inputs,
                      labels = labels)
Y
Yang Zhang 已提交
533 534

        for e in range(epoch):
535 536 537
            logger.info("======== train epoch {} ========".format(e))
            run(model, train_loader)
            model.save('yolo_checkpoints/{:02d}'.format(e))
D
dengkaipeng 已提交
538
            logger.info("======== eval epoch {} ========".format(e))
Y
Yang Zhang 已提交
539
            run(model, val_loader, mode='eval')
D
dengkaipeng 已提交
540 541 542
            # should be called in fit()
            for metric in model._metrics:
                metric.accumulate()
D
dengkaipeng 已提交
543
                metric.reset()
Y
Yang Zhang 已提交
544 545 546 547 548


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Yolov3 Training on COCO")
    parser.add_argument('data', metavar='DIR', help='path to COCO dataset')
Y
Yang Zhang 已提交
549 550
    parser.add_argument(
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
Y
Yang Zhang 已提交
551 552 553
    parser.add_argument(
        "-e", "--epoch", default=300, type=int, help="number of epoch")
    parser.add_argument(
Y
Yang Zhang 已提交
554 555
        '--lr', '--learning-rate', default=0.001, type=float, metavar='LR',
        help='initial learning rate')
Y
Yang Zhang 已提交
556
    parser.add_argument(
Y
Yang Zhang 已提交
557
        "-b", "--batch_size", default=64, type=int, help="batch size")
Y
Yang Zhang 已提交
558
    parser.add_argument(
Y
Yang Zhang 已提交
559
        "-n", "--num_devices", default=8, type=int, help="number of devices")
Y
Yang Zhang 已提交
560
    parser.add_argument(
D
dengkaipeng 已提交
561
        "-p", "--pretrain_weights", default=None, type=str,
Y
Yang Zhang 已提交
562
        help="path to pretrained weights")
D
dengkaipeng 已提交
563 564 565
    parser.add_argument(
        "-w", "--weights", default=None, type=str,
        help="path to model weights")
Y
Yang Zhang 已提交
566
    FLAGS = parser.parse_args()
Y
Yang Zhang 已提交
567
    assert FLAGS.data, "error: must provide data path"
Y
Yang Zhang 已提交
568
    main()