# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import argparse import contextlib import os import random import time from functools import partial import cv2 import numpy as np from pycocotools.coco import COCO import paddle import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Conv2D from paddle.fluid.param_attr import ParamAttr from paddle.fluid.regularizer import L2Decay from model import Model, Loss, Input from resnet import ResNet, ConvBNLayer import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) # XXX transfer learning class ResNetBackBone(ResNet): def __init__(self, depth=50): super(ResNetBackBone, self).__init__(depth=depth) delattr(self, 'fc') def forward(self, inputs): x = self.conv(inputs) x = self.pool(x) outputs = [] for layer in self.layers: x = layer(x) outputs.append(x) return outputs class YoloDetectionBlock(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters): super(YoloDetectionBlock, self).__init__() assert num_filters % 2 == 0, \ "num_filters {} cannot be divided by 2".format(num_filters) self.conv0 = ConvBNLayer( num_channels=num_channels, num_filters=num_filters, filter_size=1, act='leaky_relu') self.conv1 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 2, filter_size=3, act='leaky_relu') self.conv2 = ConvBNLayer( num_channels=num_filters * 2, num_filters=num_filters, filter_size=1, act='leaky_relu') self.conv3 = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 2, filter_size=3, act='leaky_relu') self.route = ConvBNLayer( num_channels=num_filters * 2, num_filters=num_filters, filter_size=1, act='leaky_relu') self.tip = ConvBNLayer( num_channels=num_filters, num_filters=num_filters * 2, filter_size=3, act='leaky_relu') def forward(self, inputs): out = self.conv0(inputs) out = self.conv1(out) out = self.conv2(out) out = self.conv3(out) route = self.route(out) tip = self.tip(route) return route, tip class YOLOv3(Model): def __init__(self, num_classes=80): super(YOLOv3, self).__init__() self.num_classes = num_classes self.anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326] self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] self.valid_thresh = 0.005 self.nms_thresh = 0.45 self.nms_topk = 400 self.nms_posk = 100 self.draw_thresh = 0.5 self.backbone = ResNetBackBone() self.block_outputs = [] self.yolo_blocks = [] self.route_blocks = [] for idx, num_chan in enumerate([2048, 1280, 640]): yolo_block = self.add_sublayer( "detecton_block_{}".format(idx), YoloDetectionBlock(num_chan, num_filters=512 // (2**idx))) self.yolo_blocks.append(yolo_block) num_filters = len(self.anchor_masks[idx]) * (self.num_classes + 5) block_out = self.add_sublayer( "block_out_{}".format(idx), Conv2D(num_channels=1024 // (2**idx), num_filters=num_filters, filter_size=1, param_attr=ParamAttr( initializer=fluid.initializer.Normal(0., 0.02)), bias_attr=ParamAttr( initializer=fluid.initializer.Constant(0.0), regularizer=L2Decay(0.)))) self.block_outputs.append(block_out) if idx < 2: route = self.add_sublayer( "route_{}".format(idx), ConvBNLayer(num_channels=512 // (2**idx), num_filters=256 // (2**idx), filter_size=1, act='leaky_relu')) self.route_blocks.append(route) def forward(self, inputs, img_info): outputs = [] boxes = [] scores = [] downsample = 32 feats = self.backbone(inputs) feats = feats[::-1][:len(self.anchor_masks)] route = None for idx, feat in enumerate(feats): if idx > 0: feat = fluid.layers.concat(input=[route, feat], axis=1) route, tip = self.yolo_blocks[idx](feat) block_out = self.block_outputs[idx](tip) outputs.append(block_out) if idx < 2: route = self.route_blocks[idx](route) route = fluid.layers.resize_nearest(route, scale=2) if self.mode == 'test': anchor_mask = self.anchor_masks[idx] mask_anchors = [] for m in anchor_mask: mask_anchors.append(self.anchors[2 * m]) mask_anchors.append(self.anchors[2 * m + 1]) img_shape = fluid.layers.slice(img_info, axes=[1], starts=[1], ends=[3]) img_id = fluid.layers.slice(img_info, axes=[1], starts=[0], ends=[1]) b, s = fluid.layers.yolo_box( x=block_out, img_size=img_shape, anchors=mask_anchors, class_num=self.num_classes, conf_thresh=self.valid_thresh, downsample_ratio=downsample) boxes.append(b) scores.append(fluid.layers.transpose(s, perm=[0, 2, 1])) downsample //= 2 if self.mode != 'test': return outputs return [img_id, fluid.layers.multiclass_nms( bboxes=fluid.layers.concat(boxes, axis=1), scores=fluid.layers.concat(scores, axis=2), score_threshold=self.valid_thresh, nms_top_k=self.nms_topk, keep_top_k=self.nms_posk, nms_threshold=self.nms_thresh, background_label=-1)] class YoloLoss(Loss): def __init__(self, num_classes=80): super(YoloLoss, self).__init__() self.num_classes = num_classes self.ignore_thresh = 0.7 self.anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326] self.anchor_masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] def forward(self, outputs, labels): downsample = 32 gt_box, gt_label, gt_score = labels losses = [] for idx, out in enumerate(outputs): anchor_mask = self.anchor_masks[idx] loss = fluid.layers.yolov3_loss( x=out, gt_box=gt_box, gt_label=gt_label, gt_score=gt_score, anchor_mask=anchor_mask, downsample_ratio=downsample, anchors=self.anchors, class_num=self.num_classes, ignore_thresh=self.ignore_thresh, use_label_smooth=True) loss = fluid.layers.reduce_mean(loss) losses.append(loss) downsample //= 2 return losses def make_optimizer(parameter_list=None): base_lr = FLAGS.lr warm_up_iter = 4000 momentum = 0.9 weight_decay = 5e-4 boundaries = [400000, 450000] values = [base_lr * (0.1 ** i) for i in range(len(boundaries) + 1)] learning_rate = fluid.layers.piecewise_decay( boundaries=boundaries, values=values) learning_rate = fluid.layers.linear_lr_warmup( learning_rate=learning_rate, warmup_steps=warm_up_iter, start_lr=0.0, end_lr=base_lr) optimizer = fluid.optimizer.Momentum( learning_rate=learning_rate, regularization=fluid.regularizer.L2Decay(weight_decay), momentum=momentum, parameter_list=parameter_list) return optimizer def _iou_matrix(a, b): tl_i = np.maximum(a[:, np.newaxis, :2], b[:, :2]) br_i = np.minimum(a[:, np.newaxis, 2:], b[:, 2:]) area_i = np.prod(br_i - tl_i, axis=2) * (tl_i < br_i).all(axis=2) area_a = np.prod(a[:, 2:] - a[:, :2], axis=1) area_b = np.prod(b[:, 2:] - b[:, :2], axis=1) area_o = (area_a[:, np.newaxis] + area_b - area_i) return area_i / (area_o + 1e-10) def _crop_box_with_center_constraint(box, crop): cropped_box = box.copy() cropped_box[:, :2] = np.maximum(box[:, :2], crop[:2]) cropped_box[:, 2:] = np.minimum(box[:, 2:], crop[2:]) cropped_box[:, :2] -= crop[:2] cropped_box[:, 2:] -= crop[:2] centers = (box[:, :2] + box[:, 2:]) / 2 valid = np.logical_and( crop[:2] <= centers, centers < crop[2:]).all(axis=1) valid = np.logical_and( valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1)) return cropped_box, np.where(valid)[0] def random_crop(inputs): aspect_ratios = [.5, 2.] thresholds = [.0, .1, .3, .5, .7, .9] scaling = [.3, 1.] img, img_ids, gt_box, gt_label = inputs h, w = img.shape[:2] if len(gt_box) == 0: return inputs np.random.shuffle(thresholds) for thresh in thresholds: found = False for i in range(50): scale = np.random.uniform(*scaling) min_ar, max_ar = aspect_ratios ar = np.random.uniform(max(min_ar, scale**2), min(max_ar, scale**-2)) crop_h = int(h * scale / np.sqrt(ar)) crop_w = int(w * scale * np.sqrt(ar)) crop_y = np.random.randint(0, h - crop_h) crop_x = np.random.randint(0, w - crop_w) crop_box = [crop_x, crop_y, crop_x + crop_w, crop_y + crop_h] iou = _iou_matrix(gt_box, np.array([crop_box], dtype=np.float32)) if iou.max() < thresh: continue cropped_box, valid_ids = _crop_box_with_center_constraint( gt_box, np.array(crop_box, dtype=np.float32)) if valid_ids.size > 0: found = True break if found: x1, y1, x2, y2 = crop_box img = img[y1:y2, x1:x2, :] gt_box = np.take(cropped_box, valid_ids, axis=0) gt_label = np.take(gt_label, valid_ids, axis=0) return img, img_ids, gt_box, gt_label return inputs # XXX mix up, color distort and random expand are skipped for simplicity def sample_transform(inputs, mode='train', num_max_boxes=50): if mode == 'train': img, img_id, gt_box, gt_label = random_crop(inputs) else: img, img_id, gt_box, gt_label = inputs h, w = img.shape[:2] # random flip if mode == 'train' and np.random.uniform(0., 1.) > .5: img = img[:, ::-1, :] if len(gt_box) > 0: swap = gt_box.copy() gt_box[:, 0] = w - swap[:, 2] - 1 gt_box[:, 2] = w - swap[:, 0] - 1 if len(gt_label) == 0: gt_box = np.zeros([num_max_boxes, 4], dtype=np.float32) gt_label = np.zeros([num_max_boxes], dtype=np.int32) return img, gt_box, gt_label gt_box = gt_box[:num_max_boxes, :] gt_label = gt_label[:num_max_boxes, 0] # normalize boxes gt_box /= np.array([w, h] * 2, dtype=np.float32) gt_box[:, 2:] = gt_box[:, 2:] - gt_box[:, :2] gt_box[:, :2] = gt_box[:, :2] + gt_box[:, 2:] / 2. pad = num_max_boxes - gt_label.size gt_box = np.pad(gt_box, ((0, pad), (0, 0)), mode='constant') gt_label = np.pad(gt_label, ((0, pad)), mode='constant') return img, img_id, gt_box, gt_label def batch_transform(batch, mode='train'): if mode == 'train': d = np.random.choice( [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]) interp = np.random.choice(range(5)) else: d = 608 interp = cv2.INTER_CUBIC # transpose batch imgs, img_ids, gt_boxes, gt_labels = list(zip(*batch)) img_shapes = np.array([[im.shape[0], im.shape[1]] for im in imgs]).astype('int32') imgs = np.array([cv2.resize( img, (d, d), interpolation=interp) for img in imgs]) # transpose, permute and normalize imgs = imgs.astype(np.float32)[..., ::-1] mean = np.array([123.675, 116.28, 103.53], dtype=np.float32) std = np.array([58.395, 57.120, 57.375], dtype=np.float32) invstd = 1. / std imgs -= mean imgs *= invstd imgs = imgs.transpose((0, 3, 1, 2)) img_ids = np.array(img_ids) img_info = np.concatenate([img_ids, img_shapes], axis=1) gt_boxes = np.array(gt_boxes) gt_labels = np.array(gt_labels) # XXX since mix up is not used, scores are all ones gt_scores = np.ones_like(gt_labels, dtype=np.float32) return [imgs, img_info], [gt_boxes, gt_labels, gt_scores] def coco2017(root_dir, mode='train'): json_path = os.path.join( root_dir, 'annotations/instances_{}2017.json'.format(mode)) coco = COCO(json_path) img_ids = coco.getImgIds() imgs = coco.loadImgs(img_ids) class_map = {v: i + 1 for i, v in enumerate(coco.getCatIds())} samples = [] for img in imgs: img_path = os.path.join( root_dir, '{}2017'.format(mode), img['file_name']) file_path = img_path width = img['width'] height = img['height'] ann_ids = coco.getAnnIds(imgIds=img['id'], iscrowd=False) anns = coco.loadAnns(ann_ids) gt_box = [] gt_label = [] for ann in anns: x1, y1, w, h = ann['bbox'] x2 = x1 + w - 1 y2 = y1 + h - 1 x1 = np.clip(x1, 0, width - 1) x2 = np.clip(x2, 0, width - 1) y1 = np.clip(y1, 0, height - 1) y2 = np.clip(y2, 0, height - 1) if ann['area'] <= 0 or x2 < x1 or y2 < y1: continue gt_label.append(ann['category_id']) gt_box.append([x1, y1, x2, y2]) gt_box = np.array(gt_box, dtype=np.float32) gt_label = np.array([class_map[cls] for cls in gt_label], dtype=np.int32)[:, np.newaxis] im_id = np.array([img['id']], dtype=np.int32) if gt_label.size == 0 and not mode == 'train': continue samples.append((file_path, im_id.copy(), gt_box.copy(), gt_label.copy())) def iterator(): if mode == 'train': np.random.shuffle(samples) for file_path, im_id, gt_box, gt_label in samples: img = cv2.imread(file_path) yield img, im_id, gt_box, gt_label return iterator # XXX coco metrics not included for simplicity def run(model, loader, mode='train'): total_loss = 0. total_time = 0. device_ids = list(range(FLAGS.num_devices)) start = time.time() for idx, batch in enumerate(loader()): losses = getattr(model, mode)(batch[0], batch[1]) total_loss += np.sum(losses) if idx > 1: # skip first two steps total_time += time.time() - start if idx % 10 == 0: logger.info("{:04d}: loss {:0.3f} time: {:0.3f}".format( idx, total_loss / (idx + 1), total_time / max(1, (idx - 1)))) start = time.time() def main(): @contextlib.contextmanager def null_guard(): yield epoch = FLAGS.epoch batch_size = FLAGS.batch_size guard = fluid.dygraph.guard() if FLAGS.dynamic else null_guard() train_loader = fluid.io.xmap_readers( batch_transform, paddle.batch( fluid.io.xmap_readers( sample_transform, coco2017(FLAGS.data, 'train'), process_num=8, buffer_size=4 * batch_size), batch_size=batch_size, drop_last=True), process_num=2, buffer_size=4) val_sample_transform = partial(sample_transform, mode='val') val_batch_transform = partial(batch_transform, mode='val') val_loader = fluid.io.xmap_readers( val_batch_transform, paddle.batch( fluid.io.xmap_readers( val_sample_transform, coco2017(FLAGS.data, 'val'), process_num=8, buffer_size=4 * batch_size), batch_size=1), process_num=2, buffer_size=4) if not os.path.exists('yolo_checkpoints'): os.mkdir('yolo_checkpoints') with guard: NUM_CLASSES = 7 NUM_MAX_BOXES = 50 model = YOLOv3(num_classes=NUM_CLASSES) # XXX transfer learning if FLAGS.pretrain_weights is not None: model.backbone.load(FLAGS.pretrain_weights) if FLAGS.weights is not None: model.load(FLAGS.weights) optim = make_optimizer(parameter_list=model.parameters()) anno_path = os.path.join(FLAGS.data, 'annotations', 'instances_val2017.json') inputs = [Input([None, 3, None, None], 'float32', name='image'), Input([None, 3], 'int32', name='img_info')] labels = [Input([None, NUM_MAX_BOXES, 4], 'float32', name='gt_bbox'), Input([None, NUM_MAX_BOXES], 'int32', name='gt_label'), Input([None, NUM_MAX_BOXES], 'float32', name='gt_score')] model.prepare(optim, YoloLoss(num_classes=NUM_CLASSES), # For YOLOv3, output variable in train/eval is different, # which is not supported by metric, add by callback later? # metrics=COCOMetric(anno_path, with_background=False) inputs=inputs, labels = labels) for e in range(epoch): logger.info("======== train epoch {} ========".format(e)) run(model, train_loader) model.save('yolo_checkpoints/{:02d}'.format(e)) logger.info("======== eval epoch {} ========".format(e)) run(model, val_loader, mode='eval') # should be called in fit() for metric in model._metrics: metric.accumulate() metric.reset() if __name__ == '__main__': parser = argparse.ArgumentParser("Yolov3 Training on COCO") parser.add_argument('data', metavar='DIR', help='path to COCO dataset') parser.add_argument( "-d", "--dynamic", action='store_true', help="enable dygraph mode") parser.add_argument( "-e", "--epoch", default=300, type=int, help="number of epoch") parser.add_argument( '--lr', '--learning-rate', default=0.001, type=float, metavar='LR', help='initial learning rate') parser.add_argument( "-b", "--batch_size", default=64, type=int, help="batch size") parser.add_argument( "-n", "--num_devices", default=8, type=int, help="number of devices") parser.add_argument( "-p", "--pretrain_weights", default=None, type=str, help="path to pretrained weights") parser.add_argument( "-w", "--weights", default=None, type=str, help="path to model weights") FLAGS = parser.parse_args() assert FLAGS.data, "error: must provide data path" main()