Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
hapi
提交
a65ad557
H
hapi
项目概览
PaddlePaddle
/
hapi
通知
11
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
H
hapi
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a65ad557
编写于
3月 05, 2020
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
mv COCOMetric to yolov3/coco_metric
上级
5ec5f453
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
66 addition
and
25 deletion
+66
-25
metrics.py
metrics.py
+30
-1
mnist.py
mnist.py
+10
-1
model.py
model.py
+13
-9
yolov3.py
yolov3.py
+11
-9
yolov3/__init__.py
yolov3/__init__.py
+0
-2
yolov3/coco_metric.py
yolov3/coco_metric.py
+2
-3
未找到文件。
metrics
/metric
.py
→
metrics.py
浏览文件 @
a65ad557
...
...
@@ -16,13 +16,14 @@ from __future__ import absolute_import
import
six
import
abc
import
numpy
as
np
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
__all__
=
[
'Metric'
]
__all__
=
[
'Metric'
,
'Accuracy'
]
@
six
.
add_metaclass
(
abc
.
ABCMeta
)
...
...
@@ -58,3 +59,31 @@ class Metric(object):
"""
raise
NotImplementedError
(
"function 'accumulate' not implemented in {}."
.
format
(
self
.
__class__
.
__name__
))
class
Accuracy
(
Metric
):
"""
Encapsulates accuracy metric logic
"""
def
__init__
(
self
,
topk
=
(
1
,
),
*
args
,
**
kwargs
):
super
(
Accuracy
,
self
).
__init__
(
*
args
,
**
kwargs
)
self
.
topk
=
topk
self
.
maxk
=
max
(
topk
)
self
.
reset
()
def
update
(
self
,
pred
,
label
,
*
args
,
**
kwargs
):
pred
=
np
.
argsort
(
pred
[
0
])[:,
::
-
1
][:,
:
self
.
maxk
]
corr
=
(
pred
==
np
.
repeat
(
label
[
0
],
self
.
maxk
,
1
))
self
.
correct
=
np
.
append
(
self
.
correct
,
corr
,
axis
=
0
)
def
reset
(
self
):
self
.
correct
=
np
.
empty
((
0
,
self
.
maxk
),
dtype
=
"int32"
)
def
accumulate
(
self
):
res
=
[]
num_samples
=
self
.
correct
.
shape
[
0
]
for
k
in
self
.
topk
:
correct_k
=
self
.
correct
[:,
:
k
].
sum
()
res
.
append
(
round
(
100.0
*
correct_k
/
num_samples
,
2
))
return
res
mnist.py
浏览文件 @
a65ad557
...
...
@@ -27,6 +27,7 @@ from paddle.fluid.optimizer import Momentum
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
Linear
from
model
import
Model
,
CrossEntropy
from
metrics
import
Accuracy
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
...
...
@@ -143,7 +144,7 @@ def main():
model
=
MNIST
()
optim
=
Momentum
(
learning_rate
=
FLAGS
.
lr
,
momentum
=
.
9
,
parameter_list
=
model
.
parameters
())
model
.
prepare
(
optim
,
CrossEntropy
())
model
.
prepare
(
optim
,
CrossEntropy
()
,
metrics
=
Accuracy
(
topk
=
(
1
,
2
))
)
if
FLAGS
.
resume
is
not
None
:
model
.
load
(
FLAGS
.
resume
)
...
...
@@ -163,6 +164,10 @@ def main():
if
idx
%
10
==
0
:
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%"
.
format
(
idx
,
train_loss
/
(
idx
+
1
),
train_acc
/
(
idx
+
1
)))
for
metric
in
model
.
_metrics
:
res
=
metric
.
accumulate
()
print
(
"train epoch {:03d}: top1: {:0.3f}%, top2: {:0.3f}"
.
format
(
e
,
res
[
0
],
res
[
1
]))
metric
.
reset
()
print
(
"======== eval epoch {} ========"
.
format
(
e
))
for
idx
,
batch
in
enumerate
(
val_loader
()):
...
...
@@ -175,6 +180,10 @@ def main():
if
idx
%
10
==
0
:
print
(
"{:04d}: loss {:0.3f} top1: {:0.3f}%"
.
format
(
idx
,
val_loss
/
(
idx
+
1
),
val_acc
/
(
idx
+
1
)))
for
metric
in
model
.
_metrics
:
res
=
metric
.
accumulate
()
print
(
"eval epoch {:03d}: top1: {:0.3f}%, top2: {:0.3f}"
.
format
(
e
,
res
[
0
],
res
[
1
]))
metric
.
reset
()
model
.
save
(
'mnist_checkpoints/{:02d}'
.
format
(
e
))
...
...
model.py
浏览文件 @
a65ad557
...
...
@@ -26,7 +26,7 @@ from paddle.fluid.framework import in_dygraph_mode, Variable
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.io
import
is_belong_to_optimizer
from
paddle.fluid.dygraph.base
import
to_variable
from
metrics
.metric
import
Metric
from
metrics
import
Metric
__all__
=
[
'shape_hints'
,
'Model'
,
'Loss'
,
'CrossEntropy'
]
...
...
@@ -297,6 +297,8 @@ class StaticGraphAdapter(object):
metric
.
update
(
outputs
,
labels
)
return
outputs
,
losses
else
:
# train
for
metric
in
self
.
model
.
_metrics
:
metric
.
update
(
outputs
,
labels
)
return
outputs
,
losses
def
_make_program
(
self
,
inputs
):
...
...
@@ -311,7 +313,7 @@ class StaticGraphAdapter(object):
if
self
.
mode
!=
'test'
:
label_vars
=
self
.
_infer_label_vars
(
outputs
)
self
.
_label_vars
[
self
.
mode
]
=
label_vars
losses
=
self
.
model
.
_loss_function
(
outputs
[
0
]
,
label_vars
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
label_vars
)
if
self
.
mode
==
'train'
:
self
.
_loss_endpoint
=
fluid
.
layers
.
sum
(
losses
)
self
.
model
.
_optimizer
.
minimize
(
self
.
_loss_endpoint
)
...
...
@@ -319,7 +321,7 @@ class StaticGraphAdapter(object):
prog
=
prog
.
clone
(
for_test
=
True
)
self
.
_progs
[
self
.
mode
]
=
prog
self
.
_endpoints
[
self
.
mode
]
=
{
"output"
:
outputs
[
1
:]
,
"output"
:
outputs
,
"label"
:
label_vars
,
"loss"
:
losses
,
}
...
...
@@ -419,12 +421,14 @@ class DynamicGraphAdapter(object):
self
.
mode
=
'train'
inputs
=
to_list
(
inputs
)
labels
=
to_list
(
labels
)
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
[
0
]
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
final_loss
=
fluid
.
layers
.
sum
(
losses
)
final_loss
.
backward
()
self
.
model
.
_optimizer
.
minimize
(
final_loss
)
self
.
model
.
clear_gradients
()
for
metric
in
self
.
model
.
_metrics
:
metric
.
update
([
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
labels
)
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
[
to_numpy
(
l
)
for
l
in
losses
]
...
...
@@ -436,18 +440,18 @@ class DynamicGraphAdapter(object):
inputs
=
to_list
(
inputs
)
labels
=
to_list
(
labels
)
outputs
=
self
.
model
.
forward
(
*
[
to_variable
(
x
)
for
x
in
inputs
])
losses
=
self
.
model
.
_loss_function
(
outputs
[
0
]
,
labels
)
losses
=
self
.
model
.
_loss_function
(
outputs
,
labels
)
for
metric
in
self
.
model
.
_metrics
:
metric
.
update
([
to_numpy
(
o
)
for
o
in
outputs
[
1
:]
],
labels
)
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
[
0
]
)],
\
metric
.
update
([
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)
],
labels
)
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)],
\
[
to_numpy
(
l
)
for
l
in
losses
]
def
test
(
self
,
inputs
,
device
=
'CPU'
,
device_ids
=
None
):
super
(
Model
,
self
.
model
).
eval
()
self
.
mode
=
'test'
inputs
=
[
to_variable
(
x
)
for
x
in
to_list
(
inputs
)]
outputs
=
self
.
model
.
forward
(
*
inputs
)
[
1
:]
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
[
1
:]
)]
outputs
=
self
.
model
.
forward
(
*
inputs
)
return
[
to_numpy
(
o
)
for
o
in
to_list
(
outputs
)]
def
parameters
(
self
,
*
args
,
**
kwargs
):
return
super
(
Model
,
self
.
model
).
parameters
(
*
args
,
**
kwargs
)
...
...
yolov3.py
浏览文件 @
a65ad557
...
...
@@ -35,7 +35,6 @@ from paddle.fluid.regularizer import L2Decay
from
model
import
Model
,
Loss
,
shape_hints
from
resnet
import
ResNet
,
ConvBNLayer
from
metrics.coco
import
COCOMetric
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
...
...
@@ -174,7 +173,7 @@ class YOLOv3(Model):
route
=
self
.
route_blocks
[
idx
](
route
)
route
=
fluid
.
layers
.
resize_nearest
(
route
,
scale
=
2
)
if
self
.
mode
!=
'train
'
:
if
self
.
mode
==
'test
'
:
anchor_mask
=
self
.
anchor_masks
[
idx
]
mask_anchors
=
[]
for
m
in
anchor_mask
:
...
...
@@ -195,10 +194,10 @@ class YOLOv3(Model):
downsample
//=
2
if
self
.
mode
==
'train
'
:
return
[
outputs
]
if
self
.
mode
!=
'test
'
:
return
outputs
return
[
outputs
,
img_id
,
fluid
.
layers
.
multiclass_nms
(
return
[
img_id
,
fluid
.
layers
.
multiclass_nms
(
bboxes
=
fluid
.
layers
.
concat
(
boxes
,
axis
=
1
),
scores
=
fluid
.
layers
.
concat
(
scores
,
axis
=
2
),
score_threshold
=
self
.
valid_thresh
,
...
...
@@ -533,12 +532,15 @@ def main():
anno_path
=
os
.
path
.
join
(
FLAGS
.
data
,
'annotations'
,
'instances_val2017.json'
)
model
.
prepare
(
optim
,
YoloLoss
(
num_classes
=
NUM_CLASSES
),
metrics
=
COCOMetric
(
anno_path
,
with_background
=
False
))
# For YOLOv3, output variable in train/eval is different,
# which is not supported by metric, add by callback later?
# metrics=COCOMetric(anno_path, with_background=False)
)
for
e
in
range
(
epoch
):
#
logger.info("======== train epoch {} ========".format(e))
#
run(model, train_loader)
#
model.save('yolo_checkpoints/{:02d}'.format(e))
logger
.
info
(
"======== train epoch {} ========"
.
format
(
e
))
run
(
model
,
train_loader
)
model
.
save
(
'yolo_checkpoints/{:02d}'
.
format
(
e
))
logger
.
info
(
"======== eval epoch {} ========"
.
format
(
e
))
run
(
model
,
val_loader
,
mode
=
'eval'
)
# should be called in fit()
...
...
metrics
/__init__.py
→
yolov3
/__init__.py
浏览文件 @
a65ad557
...
...
@@ -12,5 +12,3 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
metrics/coco
.py
→
yolov3/coco_metric
.py
浏览文件 @
a65ad557
...
...
@@ -12,14 +12,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
import
sys
import
json
from
pycocotools.cocoeval
import
COCOeval
from
pycocotools.coco
import
COCO
from
.metric
import
Metric
from
metrics
import
Metric
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
...
...
@@ -32,6 +30,7 @@ __all__ = ['COCOMetric']
OUTFILE
=
'./bbox.json'
# considered to change to a callback later
class
COCOMetric
(
Metric
):
"""
Metrci for MS-COCO dataset, only support update with batch
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录