main.py 6.3 KB
Newer Older
L
LielinJiang 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LielinJiang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import os
import time
L
LielinJiang 已提交
20
import argparse
L
LielinJiang 已提交
21 22
import numpy as np

L
LielinJiang 已提交
23
import paddle
24
import paddle.fluid as fluid
L
LielinJiang 已提交
25
import paddle.vision.models as models
26

L
LielinJiang 已提交
27
from paddle.static import InputSpec as Input
28
from imagenet_dataset import ImageNetDataset
L
LielinJiang 已提交
29 30
from paddle.distributed import ParallelEnv
from paddle.io import BatchSampler, DataLoader, DistributedBatchSampler
31

L
LielinJiang 已提交
32 33 34

def make_optimizer(step_per_epoch, parameter_list=None):
    base_lr = FLAGS.lr
35 36 37 38 39
    lr_scheduler = FLAGS.lr_scheduler
    momentum = FLAGS.momentum
    weight_decay = FLAGS.weight_decay

    if lr_scheduler == 'piecewise':
L
LielinJiang 已提交
40 41
        milestones = FLAGS.milestones
        boundaries = [step_per_epoch * e for e in milestones]
42 43 44 45 46 47 48 49 50 51
        values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
        learning_rate = fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values)
    elif lr_scheduler == 'cosine':
        learning_rate = fluid.layers.cosine_decay(base_lr, step_per_epoch,
                                                  FLAGS.epoch)
    else:
        raise ValueError(
            "Expected lr_scheduler in ['piecewise', 'cosine'], but got {}".
            format(lr_scheduler))
L
LielinJiang 已提交
52 53 54 55 56 57

    learning_rate = fluid.layers.linear_lr_warmup(
        learning_rate=learning_rate,
        warmup_steps=5 * step_per_epoch,
        start_lr=0.,
        end_lr=base_lr)
58

L
LielinJiang 已提交
59 60 61 62 63
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=momentum,
        regularization=fluid.regularizer.L2Decay(weight_decay),
        parameter_list=parameter_list)
64

L
LielinJiang 已提交
65 66 67 68
    return optimizer


def main():
L
LielinJiang 已提交
69 70
    device = paddle.set_device(FLAGS.device)
    paddle.disable_static(device) if FLAGS.dynamic else None
L
LielinJiang 已提交
71

72 73 74
    model_list = [x for x in models.__dict__["__all__"]]
    assert FLAGS.arch in model_list, "Expected FLAGS.arch in {}, but received {}".format(
        model_list, FLAGS.arch)
L
LielinJiang 已提交
75 76
    net = models.__dict__[FLAGS.arch](pretrained=FLAGS.eval_only and
                                      not FLAGS.resume)
L
LielinJiang 已提交
77 78 79 80

    inputs = [Input([None, 3, 224, 224], 'float32', name='image')]
    labels = [Input([None, 1], 'int64', name='label')]

L
LielinJiang 已提交
81 82 83 84 85
    model = paddle.Model(net, inputs, labels)

    if FLAGS.resume is not None:
        model.load(FLAGS.resume)

L
LielinJiang 已提交
86
    train_dataset = ImageNetDataset(
L
LielinJiang 已提交
87 88 89 90 91 92 93 94 95 96
        os.path.join(FLAGS.data, 'train'),
        mode='train',
        image_size=FLAGS.image_size,
        resize_short_size=FLAGS.resize_short_size)

    val_dataset = ImageNetDataset(
        os.path.join(FLAGS.data, 'val'),
        mode='val',
        image_size=FLAGS.image_size,
        resize_short_size=FLAGS.resize_short_size)
L
LielinJiang 已提交
97 98 99 100 101 102

    optim = make_optimizer(
        np.ceil(
            len(train_dataset) * 1. / FLAGS.batch_size / ParallelEnv().nranks),
        parameter_list=model.parameters())

103 104
    model.prepare(
        optim,
L
LielinJiang 已提交
105 106
        paddle.nn.CrossEntropyLoss(),
        paddle.metric.Accuracy(topk=(1, 5)))
L
LielinJiang 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

    if FLAGS.eval_only:
        model.evaluate(
            val_dataset,
            batch_size=FLAGS.batch_size,
            num_workers=FLAGS.num_workers)
        return

    output_dir = os.path.join(FLAGS.output_dir, FLAGS.arch,
                              time.strftime('%Y-%m-%d-%H-%M',
                                            time.localtime()))
    if ParallelEnv().local_rank == 0 and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    model.fit(train_dataset,
              val_dataset,
              batch_size=FLAGS.batch_size,
              epochs=FLAGS.epoch,
              save_dir=output_dir,
              num_workers=FLAGS.num_workers)


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Resnet Training on ImageNet")
    parser.add_argument(
        'data',
        metavar='DIR',
        help='path to dataset '
        '(should have subdirectories named "train" and "val"')
    parser.add_argument(
        "--arch", type=str, default='resnet50', help="model name")
    parser.add_argument(
        "--device", type=str, default='gpu', help="device to run, cpu or gpu")
    parser.add_argument(
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
    parser.add_argument(
L
LielinJiang 已提交
143
        "-e", "--epoch", default=90, type=int, help="number of epoch")
L
LielinJiang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    parser.add_argument(
        '--lr',
        '--learning-rate',
        default=0.1,
        type=float,
        metavar='LR',
        help='initial learning rate')
    parser.add_argument(
        "-b", "--batch-size", default=64, type=int, help="batch size")
    parser.add_argument(
        "-n", "--num-workers", default=4, type=int, help="dataloader workers")
    parser.add_argument(
        "--output-dir", type=str, default='output', help="save dir")
    parser.add_argument(
        "-r",
        "--resume",
        default=None,
        type=str,
        help="checkpoint path to resume")
    parser.add_argument(
164
        "--eval-only", action='store_true', help="only evaluate the model")
165 166 167 168 169
    parser.add_argument(
        "--lr-scheduler",
        default='piecewise',
        type=str,
        help="learning rate scheduler")
L
LielinJiang 已提交
170 171 172 173 174 175
    parser.add_argument(
        "--milestones",
        nargs='+',
        type=int,
        default=[30, 60, 80],
        help="piecewise decay milestones")
176 177 178
    parser.add_argument(
        "--weight-decay", default=1e-4, type=float, help="weight decay")
    parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
L
LielinJiang 已提交
179 180 181 182 183
    parser.add_argument(
        "--image-size", default=224, type=int, help="intput image size")
    parser.add_argument(
        "--resize-short-size",
        default=256,
L
LielinJiang 已提交
184
        type=int,
L
LielinJiang 已提交
185
        help="short size of keeping ratio resize")
L
LielinJiang 已提交
186 187 188
    FLAGS = parser.parse_args()
    assert FLAGS.data, "error: must provide data path"
    main()