提交 43ec4521 编写于 作者: L LielinJiang

add docs

上级 e51b938b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -42,7 +41,8 @@ def make_optimizer(step_per_epoch, parameter_list=None): ...@@ -42,7 +41,8 @@ def make_optimizer(step_per_epoch, parameter_list=None):
weight_decay = FLAGS.weight_decay weight_decay = FLAGS.weight_decay
if lr_scheduler == 'piecewise': if lr_scheduler == 'piecewise':
boundaries = [step_per_epoch * e for e in [30, 60, 80]] milestones = FLAGS.milestones
boundaries = [step_per_epoch * e for e in milestones]
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)] values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = fluid.layers.piecewise_decay( learning_rate = fluid.layers.piecewise_decay(
boundaries=boundaries, values=values) boundaries=boundaries, values=values)
...@@ -155,6 +155,12 @@ if __name__ == '__main__': ...@@ -155,6 +155,12 @@ if __name__ == '__main__':
default='piecewise', default='piecewise',
type=str, type=str,
help="learning rate scheduler") help="learning rate scheduler")
parser.add_argument(
"--milestones",
nargs='+',
type=int,
default=[30, 60, 80],
help="piecewise decay milestones")
parser.add_argument( parser.add_argument(
"--weight-decay", default=1e-4, type=float, help="weight decay") "--weight-decay", default=1e-4, type=float, help="weight decay")
parser.add_argument("--momentum", default=0.9, type=float, help="momentum") parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import math
import sys
import numpy as np
import argparse
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model
from .download import get_weights_path
__all__ = [
'MobileNetV2', 'mobilnetv2_x0_25', 'mobilnetv2_x0_5', 'mobilnetv2_x0_75',
'mobilnetv2_x1_0', 'mobilnetv2_x1_25', 'mobilnetv2_x1_5',
'mobilnetv2_x1_75', 'mobilnetv2_x2_0'
]
model_urls = {}
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
use_cudnn=True):
super(ConvBNLayer, self).__init__()
tmp_param = ParamAttr(name=self.full_name() + "_weights")
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=tmp_param,
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
moving_mean_name=self.full_name() + "_bn" + '_mean',
moving_variance_name=self.full_name() + "_bn" + '_variance')
def forward(self, inputs, if_act=True):
y = self._conv(inputs)
y = self._batch_norm(y)
if if_act:
y = fluid.layers.relu6(y)
return y
class InvertedResidualUnit(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_in_filter,
num_filters,
stride,
filter_size,
padding,
expansion_factor, ):
super(InvertedResidualUnit, self).__init__()
num_expfilter = int(round(num_in_filter * expansion_factor))
self._expand_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=num_expfilter,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
self._bottleneck_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_expfilter,
filter_size=filter_size,
stride=stride,
padding=padding,
num_groups=num_expfilter,
use_cudnn=False)
self._linear_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
def forward(self, inputs, ifshortcut):
y = self._expand_conv(inputs, if_act=True)
y = self._bottleneck_conv(y, if_act=True)
y = self._linear_conv(y, if_act=False)
if ifshortcut:
y = fluid.layers.elementwise_add(inputs, y)
return y
class InvresiBlocks(fluid.dygraph.Layer):
def __init__(self, in_c, t, c, n, s):
super(InvresiBlocks, self).__init__()
self._first_block = InvertedResidualUnit(
num_channels=in_c,
num_in_filter=in_c,
num_filters=c,
stride=s,
filter_size=3,
padding=1,
expansion_factor=t)
self._inv_blocks = []
for i in range(1, n):
tmp = self.add_sublayer(
sublayer=InvertedResidualUnit(
num_channels=c,
num_in_filter=c,
num_filters=c,
stride=1,
filter_size=3,
padding=1,
expansion_factor=t),
name=self.full_name() + "_" + str(i + 1))
self._inv_blocks.append(tmp)
def forward(self, inputs):
y = self._first_block(inputs, ifshortcut=False)
for inv_block in self._inv_blocks:
y = inv_block(y, ifshortcut=True)
return y
class MobileNetV2(Model):
def __init__(self, class_dim=1000, scale=1.0):
super(MobileNetV2, self).__init__()
self.scale = scale
self.class_dim = class_dim
bottleneck_params_list = [
(1, 16, 1, 1),
(6, 24, 2, 2),
(6, 32, 3, 2),
(6, 64, 4, 2),
(6, 96, 3, 1),
(6, 160, 3, 2),
(6, 320, 1, 1),
]
#1. conv1
self._conv1 = ConvBNLayer(
num_channels=3,
num_filters=int(32 * scale),
filter_size=3,
stride=2,
padding=1)
#2. bottleneck sequences
self._invl = []
i = 1
in_c = int(32 * scale)
for layer_setting in bottleneck_params_list:
t, c, n, s = layer_setting
i += 1
tmp = self.add_sublayer(
sublayer=InvresiBlocks(
in_c=in_c, t=t, c=int(c * scale), n=n, s=s),
name='conv' + str(i))
self._invl.append(tmp)
in_c = int(c * scale)
#3. last_conv
self._out_c = int(1280 * scale) if scale > 1.0 else 1280
self._conv9 = ConvBNLayer(
num_channels=in_c,
num_filters=self._out_c,
filter_size=1,
stride=1,
padding=0)
#4. pool
self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
#5. fc
tmp_param = ParamAttr(name=self.full_name() + "fc10_weights")
self._fc = Linear(
self._out_c,
class_dim,
act='softmax',
param_attr=tmp_param,
bias_attr=ParamAttr(name="fc10_offset"))
def forward(self, inputs):
y = self._conv1(inputs, if_act=True)
for inv in self._invl:
y = inv(y)
y = self._conv9(y, if_act=True)
y = self._pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self._out_c])
y = self._fc(y)
return y
def _mobilenet(arch, pretrained=False, **kwargs):
model = MobileNetV2(**kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path(model_urls[arch][0],
model_urls[arch][1])
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path[:-9])
return model
def mobilnetv2_x1_0(pretrained=False):
model = _mobilenet('mobilenetv2_1.0', pretrained, scale=1.0)
return model
def mobilnetv2_x0_25(pretrained=False):
model = _mobilenet('mobilenetv2_0.25', pretrained, scale=0.25)
return model
def mobilnetv2_x0_5(pretrained=False):
model = _mobilenet('mobilenetv2_0.5', pretrained, scale=0.5)
return model
def mobilnetv2_x0_75(pretrained=False):
model = _mobilenet('mobilenetv2_0.75', pretrained, scale=0.75)
return model
def mobilnetv2_x1_25(pretrained=False):
model = _mobilenet('mobilenetv2_1.25', pretrained, scale=1.25)
return model
def mobilnetv2_x1_5(pretrained=False):
model = _mobilenet('mobilenetv2_1.5', pretrained, scale=1.5)
return model
def mobilnetv2_x1_75(pretrained=False):
model = _mobilenet('mobilenetv2_1.75', pretrained, scale=1.75)
return model
def mobilnetv2_x2_0(pretrained=False):
model = _mobilenet('mobilenetv2_2.0', pretrained, scale=2.0)
return model
...@@ -12,29 +12,17 @@ ...@@ -12,29 +12,17 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
import time
import sys
import math
import numpy as np import numpy as np
import argparse
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model from model import Model
from .download import get_weights_path from .download import get_weights_path
__all__ = [ __all__ = ['MobileNetV1', 'mobilenet_v1']
'MobileNetV1', 'mobilnetv1_x0_25', 'mobilnetv1_x0_5', 'mobilnetv1_x0_75',
'mobilnetv1_x1_0', 'mobilnetv1_x1_25', 'mobilnetv1_x1_5',
'mobilnetv1_x1_75', 'mobilnetv1_x2_0'
]
model_urls = {} model_urls = {}
...@@ -114,6 +102,14 @@ class DepthwiseSeparable(fluid.dygraph.Layer): ...@@ -114,6 +102,14 @@ class DepthwiseSeparable(fluid.dygraph.Layer):
class MobileNetV1(Model): class MobileNetV1(Model):
"""MobileNetV1 model from
`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
class_dim (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, scale=1.0, class_dim=1000): def __init__(self, scale=1.0, class_dim=1000):
super(MobileNetV1, self).__init__() super(MobileNetV1, self).__init__()
self.scale = scale self.scale = scale
...@@ -261,41 +257,6 @@ def _mobilenet(arch, pretrained=False, **kwargs): ...@@ -261,41 +257,6 @@ def _mobilenet(arch, pretrained=False, **kwargs):
return model return model
def mobilnetv1_x1_0(pretrained=False): def mobilenet_v1(pretrained=False, scale=1.0):
model = _mobilenet('mobilenetv1_1.0', pretrained, scale=1.0) model = _mobilenet('mobilenetv1_' + str(scale), pretrained, scale=scale)
return model
def mobilnetv1_x0_25(pretrained=False):
model = _mobilenet('mobilenetv1_0.25', pretrained, scale=0.25)
return model
def mobilnetv1_x0_5(pretrained=False):
model = _mobilenet('mobilenetv1_0.5', pretrained, scale=0.5)
return model
def mobilnetv1_x0_75(pretrained=False):
model = _mobilenet('mobilenetv1_0.75', pretrained, scale=0.75)
return model
def mobilnetv1_x1_25(pretrained=False):
model = _mobilenet('mobilenetv1_1.25', pretrained, scale=1.25)
return model
def mobilnetv1_x1_5(pretrained=False):
model = _mobilenet('mobilenetv1_1.5', pretrained, scale=1.5)
return model
def mobilnetv1_x1_75(pretrained=False):
model = _mobilenet('mobilenetv1_1.75', pretrained, scale=1.75)
return model
def mobilnetv1_x2_0(pretrained=False):
model = _mobilenet('mobilenetv1_2.0', pretrained, scale=2.0)
return model return model
...@@ -12,29 +12,16 @@ ...@@ -12,29 +12,16 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
import time
import math
import sys
import numpy as np import numpy as np
import argparse
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model from model import Model
from .download import get_weights_path from .download import get_weights_path
__all__ = [ __all__ = ['MobileNetV2', 'mobilenet_v2']
'MobileNetV2', 'mobilnetv2_x0_25', 'mobilnetv2_x0_5', 'mobilnetv2_x0_75',
'mobilnetv2_x1_0', 'mobilnetv2_x1_25', 'mobilnetv2_x1_5',
'mobilnetv2_x1_75', 'mobilnetv2_x2_0'
]
model_urls = {} model_urls = {}
...@@ -160,7 +147,15 @@ class InvresiBlocks(fluid.dygraph.Layer): ...@@ -160,7 +147,15 @@ class InvresiBlocks(fluid.dygraph.Layer):
class MobileNetV2(Model): class MobileNetV2(Model):
def __init__(self, class_dim=1000, scale=1.0): """MobileNetV2 model from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
class_dim (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNetV2, self).__init__() super(MobileNetV2, self).__init__()
self.scale = scale self.scale = scale
self.class_dim = class_dim self.class_dim = class_dim
...@@ -243,41 +238,11 @@ def _mobilenet(arch, pretrained=False, **kwargs): ...@@ -243,41 +238,11 @@ def _mobilenet(arch, pretrained=False, **kwargs):
return model return model
def mobilnetv2_x1_0(pretrained=False): def mobilenet_v2(pretrained=False, scale=1.0):
model = _mobilenet('mobilenetv2_1.0', pretrained, scale=1.0) """MobileNetV2
return model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
def mobilnetv2_x0_25(pretrained=False): """
model = _mobilenet('mobilenetv2_0.25', pretrained, scale=0.25) model = _mobilenet('mobilenetv2_' + str(scale), pretrained, scale=scale)
return model
def mobilnetv2_x0_5(pretrained=False):
model = _mobilenet('mobilenetv2_0.5', pretrained, scale=0.5)
return model
def mobilnetv2_x0_75(pretrained=False):
model = _mobilenet('mobilenetv2_0.75', pretrained, scale=0.75)
return model
def mobilnetv2_x1_25(pretrained=False):
model = _mobilenet('mobilenetv2_1.25', pretrained, scale=1.25)
return model
def mobilnetv2_x1_5(pretrained=False):
model = _mobilenet('mobilenetv2_1.5', pretrained, scale=1.5)
return model
def mobilnetv2_x1_75(pretrained=False):
model = _mobilenet('mobilenetv2_1.75', pretrained, scale=1.75)
return model
def mobilnetv2_x2_0(pretrained=False):
model = _mobilenet('mobilenetv2_2.0', pretrained, scale=2.0)
return model return model
...@@ -157,6 +157,15 @@ class BottleneckBlock(fluid.dygraph.Layer): ...@@ -157,6 +157,15 @@ class BottleneckBlock(fluid.dygraph.Layer):
class ResNet(Model): class ResNet(Model):
"""ResNet model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Block (BasicBlock|BottleneckBlock): block module of model.
depth (int): layers of resnet, default: 50.
num_classes (int): output dim of last fc layer, default: 1000.
"""
def __init__(self, Block, depth=50, num_classes=1000): def __init__(self, Block, depth=50, num_classes=1000):
super(ResNet, self).__init__() super(ResNet, self).__init__()
...@@ -240,20 +249,45 @@ def _resnet(arch, Block, depth, pretrained): ...@@ -240,20 +249,45 @@ def _resnet(arch, Block, depth, pretrained):
def resnet18(pretrained=False): def resnet18(pretrained=False):
"""ResNet 18-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet18', BasicBlock, 18, pretrained) return _resnet('resnet18', BasicBlock, 18, pretrained)
def resnet34(pretrained=False): def resnet34(pretrained=False):
"""ResNet 34-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet34', BasicBlock, 34, pretrained) return _resnet('resnet34', BasicBlock, 34, pretrained)
def resnet50(pretrained=False): def resnet50(pretrained=False):
"""ResNet 50-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet50', BottleneckBlock, 50, pretrained) return _resnet('resnet50', BottleneckBlock, 50, pretrained)
def resnet101(pretrained=False): def resnet101(pretrained=False):
"""ResNet 101-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet101', BottleneckBlock, 101, pretrained) return _resnet('resnet101', BottleneckBlock, 101, pretrained)
def resnet152(pretrained=False): def resnet152(pretrained=False):
"""ResNet 152-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet152', BottleneckBlock, 152, pretrained) return _resnet('resnet152', BottleneckBlock, 152, pretrained)
...@@ -12,21 +12,10 @@ ...@@ -12,21 +12,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
import time
import math
import sys
import numpy as np
import argparse
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential from paddle.fluid.dygraph.container import Sequential
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model from model import Model
from .download import get_weights_path from .download import get_weights_path
...@@ -65,7 +54,15 @@ class Classifier(fluid.dygraph.Layer): ...@@ -65,7 +54,15 @@ class Classifier(fluid.dygraph.Layer):
class VGG(Model): class VGG(Model):
def __init__(self, features, num_classes=1000, init_weights=True): """VGG model from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
Args:
features (fluid.dygraph.Layer): vgg features create by function make_layers.
num_classes (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, features, num_classes=1000):
super(VGG, self).__init__() super(VGG, self).__init__()
self.features = features self.features = features
classifier = Classifier(num_classes) classifier = Classifier(num_classes)
...@@ -74,9 +71,7 @@ class VGG(Model): ...@@ -74,9 +71,7 @@ class VGG(Model):
def forward(self, x): def forward(self, x):
x = self.features(x) x = self.features(x)
# x = fluid.layers.adaptive_pool2d(x, pool_size=(7, 7), pool_type='avg') x = fluid.layers.flatten(x, 1)
# x = fluid.layers.flatten(x, 1)
x = fluid.layers.reshape(x, [-1, 7 * 7 * 512])
x = self.classifier(x) x = self.classifier(x)
return x return x
...@@ -116,9 +111,8 @@ cfgs = { ...@@ -116,9 +111,8 @@ cfgs = {
def _vgg(arch, cfg, batch_norm, pretrained, **kwargs): def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs) model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained: if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch) arch)
...@@ -127,6 +121,7 @@ def _vgg(arch, cfg, batch_norm, pretrained, **kwargs): ...@@ -127,6 +121,7 @@ def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
assert weight_path.endswith( assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams" '.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path[:-9]) model.load(weight_path[:-9])
return model return model
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册