提交 43ec4521 编写于 作者: L LielinJiang

add docs

上级 e51b938b
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
......@@ -42,7 +41,8 @@ def make_optimizer(step_per_epoch, parameter_list=None):
weight_decay = FLAGS.weight_decay
if lr_scheduler == 'piecewise':
boundaries = [step_per_epoch * e for e in [30, 60, 80]]
milestones = FLAGS.milestones
boundaries = [step_per_epoch * e for e in milestones]
values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
learning_rate = fluid.layers.piecewise_decay(
boundaries=boundaries, values=values)
......@@ -155,6 +155,12 @@ if __name__ == '__main__':
default='piecewise',
type=str,
help="learning rate scheduler")
parser.add_argument(
"--milestones",
nargs='+',
type=int,
default=[30, 60, 80],
help="piecewise decay milestones")
parser.add_argument(
"--weight-decay", default=1e-4, type=float, help="weight decay")
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import math
import sys
import numpy as np
import argparse
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model
from .download import get_weights_path
__all__ = [
'MobileNetV2', 'mobilnetv2_x0_25', 'mobilnetv2_x0_5', 'mobilnetv2_x0_75',
'mobilnetv2_x1_0', 'mobilnetv2_x1_25', 'mobilnetv2_x1_5',
'mobilnetv2_x1_75', 'mobilnetv2_x2_0'
]
model_urls = {}
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
num_channels,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
use_cudnn=True):
super(ConvBNLayer, self).__init__()
tmp_param = ParamAttr(name=self.full_name() + "_weights")
self._conv = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=tmp_param,
bias_attr=False)
self._batch_norm = BatchNorm(
num_filters,
param_attr=ParamAttr(name=self.full_name() + "_bn" + "_scale"),
bias_attr=ParamAttr(name=self.full_name() + "_bn" + "_offset"),
moving_mean_name=self.full_name() + "_bn" + '_mean',
moving_variance_name=self.full_name() + "_bn" + '_variance')
def forward(self, inputs, if_act=True):
y = self._conv(inputs)
y = self._batch_norm(y)
if if_act:
y = fluid.layers.relu6(y)
return y
class InvertedResidualUnit(fluid.dygraph.Layer):
def __init__(
self,
num_channels,
num_in_filter,
num_filters,
stride,
filter_size,
padding,
expansion_factor, ):
super(InvertedResidualUnit, self).__init__()
num_expfilter = int(round(num_in_filter * expansion_factor))
self._expand_conv = ConvBNLayer(
num_channels=num_channels,
num_filters=num_expfilter,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
self._bottleneck_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_expfilter,
filter_size=filter_size,
stride=stride,
padding=padding,
num_groups=num_expfilter,
use_cudnn=False)
self._linear_conv = ConvBNLayer(
num_channels=num_expfilter,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
num_groups=1)
def forward(self, inputs, ifshortcut):
y = self._expand_conv(inputs, if_act=True)
y = self._bottleneck_conv(y, if_act=True)
y = self._linear_conv(y, if_act=False)
if ifshortcut:
y = fluid.layers.elementwise_add(inputs, y)
return y
class InvresiBlocks(fluid.dygraph.Layer):
def __init__(self, in_c, t, c, n, s):
super(InvresiBlocks, self).__init__()
self._first_block = InvertedResidualUnit(
num_channels=in_c,
num_in_filter=in_c,
num_filters=c,
stride=s,
filter_size=3,
padding=1,
expansion_factor=t)
self._inv_blocks = []
for i in range(1, n):
tmp = self.add_sublayer(
sublayer=InvertedResidualUnit(
num_channels=c,
num_in_filter=c,
num_filters=c,
stride=1,
filter_size=3,
padding=1,
expansion_factor=t),
name=self.full_name() + "_" + str(i + 1))
self._inv_blocks.append(tmp)
def forward(self, inputs):
y = self._first_block(inputs, ifshortcut=False)
for inv_block in self._inv_blocks:
y = inv_block(y, ifshortcut=True)
return y
class MobileNetV2(Model):
def __init__(self, class_dim=1000, scale=1.0):
super(MobileNetV2, self).__init__()
self.scale = scale
self.class_dim = class_dim
bottleneck_params_list = [
(1, 16, 1, 1),
(6, 24, 2, 2),
(6, 32, 3, 2),
(6, 64, 4, 2),
(6, 96, 3, 1),
(6, 160, 3, 2),
(6, 320, 1, 1),
]
#1. conv1
self._conv1 = ConvBNLayer(
num_channels=3,
num_filters=int(32 * scale),
filter_size=3,
stride=2,
padding=1)
#2. bottleneck sequences
self._invl = []
i = 1
in_c = int(32 * scale)
for layer_setting in bottleneck_params_list:
t, c, n, s = layer_setting
i += 1
tmp = self.add_sublayer(
sublayer=InvresiBlocks(
in_c=in_c, t=t, c=int(c * scale), n=n, s=s),
name='conv' + str(i))
self._invl.append(tmp)
in_c = int(c * scale)
#3. last_conv
self._out_c = int(1280 * scale) if scale > 1.0 else 1280
self._conv9 = ConvBNLayer(
num_channels=in_c,
num_filters=self._out_c,
filter_size=1,
stride=1,
padding=0)
#4. pool
self._pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
#5. fc
tmp_param = ParamAttr(name=self.full_name() + "fc10_weights")
self._fc = Linear(
self._out_c,
class_dim,
act='softmax',
param_attr=tmp_param,
bias_attr=ParamAttr(name="fc10_offset"))
def forward(self, inputs):
y = self._conv1(inputs, if_act=True)
for inv in self._invl:
y = inv(y)
y = self._conv9(y, if_act=True)
y = self._pool2d_avg(y)
y = fluid.layers.reshape(y, shape=[-1, self._out_c])
y = self._fc(y)
return y
def _mobilenet(arch, pretrained=False, **kwargs):
model = MobileNetV2(**kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path(model_urls[arch][0],
model_urls[arch][1])
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path[:-9])
return model
def mobilnetv2_x1_0(pretrained=False):
model = _mobilenet('mobilenetv2_1.0', pretrained, scale=1.0)
return model
def mobilnetv2_x0_25(pretrained=False):
model = _mobilenet('mobilenetv2_0.25', pretrained, scale=0.25)
return model
def mobilnetv2_x0_5(pretrained=False):
model = _mobilenet('mobilenetv2_0.5', pretrained, scale=0.5)
return model
def mobilnetv2_x0_75(pretrained=False):
model = _mobilenet('mobilenetv2_0.75', pretrained, scale=0.75)
return model
def mobilnetv2_x1_25(pretrained=False):
model = _mobilenet('mobilenetv2_1.25', pretrained, scale=1.25)
return model
def mobilnetv2_x1_5(pretrained=False):
model = _mobilenet('mobilenetv2_1.5', pretrained, scale=1.5)
return model
def mobilnetv2_x1_75(pretrained=False):
model = _mobilenet('mobilenetv2_1.75', pretrained, scale=1.75)
return model
def mobilnetv2_x2_0(pretrained=False):
model = _mobilenet('mobilenetv2_2.0', pretrained, scale=2.0)
return model
......@@ -12,29 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import sys
import math
import numpy as np
import argparse
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model
from .download import get_weights_path
__all__ = [
'MobileNetV1', 'mobilnetv1_x0_25', 'mobilnetv1_x0_5', 'mobilnetv1_x0_75',
'mobilnetv1_x1_0', 'mobilnetv1_x1_25', 'mobilnetv1_x1_5',
'mobilnetv1_x1_75', 'mobilnetv1_x2_0'
]
__all__ = ['MobileNetV1', 'mobilenet_v1']
model_urls = {}
......@@ -114,6 +102,14 @@ class DepthwiseSeparable(fluid.dygraph.Layer):
class MobileNetV1(Model):
"""MobileNetV1 model from
`"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" <https://arxiv.org/abs/1704.04861>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
class_dim (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNetV1, self).__init__()
self.scale = scale
......@@ -261,41 +257,6 @@ def _mobilenet(arch, pretrained=False, **kwargs):
return model
def mobilnetv1_x1_0(pretrained=False):
model = _mobilenet('mobilenetv1_1.0', pretrained, scale=1.0)
return model
def mobilnetv1_x0_25(pretrained=False):
model = _mobilenet('mobilenetv1_0.25', pretrained, scale=0.25)
return model
def mobilnetv1_x0_5(pretrained=False):
model = _mobilenet('mobilenetv1_0.5', pretrained, scale=0.5)
return model
def mobilnetv1_x0_75(pretrained=False):
model = _mobilenet('mobilenetv1_0.75', pretrained, scale=0.75)
return model
def mobilnetv1_x1_25(pretrained=False):
model = _mobilenet('mobilenetv1_1.25', pretrained, scale=1.25)
return model
def mobilnetv1_x1_5(pretrained=False):
model = _mobilenet('mobilenetv1_1.5', pretrained, scale=1.5)
return model
def mobilnetv1_x1_75(pretrained=False):
model = _mobilenet('mobilenetv1_1.75', pretrained, scale=1.75)
return model
def mobilnetv1_x2_0(pretrained=False):
model = _mobilenet('mobilenetv1_2.0', pretrained, scale=2.0)
def mobilenet_v1(pretrained=False, scale=1.0):
model = _mobilenet('mobilenetv1_' + str(scale), pretrained, scale=scale)
return model
......@@ -12,29 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import math
import sys
import numpy as np
import argparse
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model
from .download import get_weights_path
__all__ = [
'MobileNetV2', 'mobilnetv2_x0_25', 'mobilnetv2_x0_5', 'mobilnetv2_x0_75',
'mobilnetv2_x1_0', 'mobilnetv2_x1_25', 'mobilnetv2_x1_5',
'mobilnetv2_x1_75', 'mobilnetv2_x2_0'
]
__all__ = ['MobileNetV2', 'mobilenet_v2']
model_urls = {}
......@@ -160,7 +147,15 @@ class InvresiBlocks(fluid.dygraph.Layer):
class MobileNetV2(Model):
def __init__(self, class_dim=1000, scale=1.0):
"""MobileNetV2 model from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args:
scale (float): scale of channels in each layer. Default: 1.0.
class_dim (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, scale=1.0, class_dim=1000):
super(MobileNetV2, self).__init__()
self.scale = scale
self.class_dim = class_dim
......@@ -243,41 +238,11 @@ def _mobilenet(arch, pretrained=False, **kwargs):
return model
def mobilnetv2_x1_0(pretrained=False):
model = _mobilenet('mobilenetv2_1.0', pretrained, scale=1.0)
return model
def mobilnetv2_x0_25(pretrained=False):
model = _mobilenet('mobilenetv2_0.25', pretrained, scale=0.25)
return model
def mobilnetv2_x0_5(pretrained=False):
model = _mobilenet('mobilenetv2_0.5', pretrained, scale=0.5)
return model
def mobilnetv2_x0_75(pretrained=False):
model = _mobilenet('mobilenetv2_0.75', pretrained, scale=0.75)
return model
def mobilnetv2_x1_25(pretrained=False):
model = _mobilenet('mobilenetv2_1.25', pretrained, scale=1.25)
return model
def mobilnetv2_x1_5(pretrained=False):
model = _mobilenet('mobilenetv2_1.5', pretrained, scale=1.5)
return model
def mobilnetv2_x1_75(pretrained=False):
model = _mobilenet('mobilenetv2_1.75', pretrained, scale=1.75)
return model
def mobilnetv2_x2_0(pretrained=False):
model = _mobilenet('mobilenetv2_2.0', pretrained, scale=2.0)
def mobilenet_v2(pretrained=False, scale=1.0):
"""MobileNetV2
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = _mobilenet('mobilenetv2_' + str(scale), pretrained, scale=scale)
return model
......@@ -157,6 +157,15 @@ class BottleneckBlock(fluid.dygraph.Layer):
class ResNet(Model):
"""ResNet model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
Block (BasicBlock|BottleneckBlock): block module of model.
depth (int): layers of resnet, default: 50.
num_classes (int): output dim of last fc layer, default: 1000.
"""
def __init__(self, Block, depth=50, num_classes=1000):
super(ResNet, self).__init__()
......@@ -240,20 +249,45 @@ def _resnet(arch, Block, depth, pretrained):
def resnet18(pretrained=False):
"""ResNet 18-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet18', BasicBlock, 18, pretrained)
def resnet34(pretrained=False):
"""ResNet 34-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet34', BasicBlock, 34, pretrained)
def resnet50(pretrained=False):
"""ResNet 50-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet50', BottleneckBlock, 50, pretrained)
def resnet101(pretrained=False):
"""ResNet 101-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet101', BottleneckBlock, 101, pretrained)
def resnet152(pretrained=False):
"""ResNet 152-layer model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
return _resnet('resnet152', BottleneckBlock, 152, pretrained)
......@@ -12,21 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import math
import sys
import numpy as np
import argparse
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.container import Sequential
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid import framework
from model import Model
from .download import get_weights_path
......@@ -65,7 +54,15 @@ class Classifier(fluid.dygraph.Layer):
class VGG(Model):
def __init__(self, features, num_classes=1000, init_weights=True):
"""VGG model from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>`_
Args:
features (fluid.dygraph.Layer): vgg features create by function make_layers.
num_classes (int): output dim of last fc layer. Default: 1000.
"""
def __init__(self, features, num_classes=1000):
super(VGG, self).__init__()
self.features = features
classifier = Classifier(num_classes)
......@@ -74,9 +71,7 @@ class VGG(Model):
def forward(self, x):
x = self.features(x)
# x = fluid.layers.adaptive_pool2d(x, pool_size=(7, 7), pool_type='avg')
# x = fluid.layers.flatten(x, 1)
x = fluid.layers.reshape(x, [-1, 7 * 7 * 512])
x = fluid.layers.flatten(x, 1)
x = self.classifier(x)
return x
......@@ -116,9 +111,8 @@ cfgs = {
def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs[cfg], batch_norm=batch_norm), **kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
......@@ -127,6 +121,7 @@ def _vgg(arch, cfg, batch_norm, pretrained, **kwargs):
assert weight_path.endswith(
'.pdparams'), "suffix of weight must be .pdparams"
model.load(weight_path[:-9])
return model
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册