main.py 5.5 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import argparse
import contextlib
import os
import sys
sys.path.append('../')

import time
import math
import numpy as np
import models
import paddle.fluid as fluid

from model import CrossEntropy, Input, set_device
from imagenet_dataset import ImageNetDataset
from distributed import DistributedBatchSampler
from paddle.fluid.dygraph.parallel import ParallelEnv
from metrics import Accuracy
from paddle.fluid.io import BatchSampler, DataLoader


def make_optimizer(step_per_epoch, parameter_list=None):
    base_lr = FLAGS.lr
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    lr_scheduler = FLAGS.lr_scheduler
    momentum = FLAGS.momentum
    weight_decay = FLAGS.weight_decay

    if lr_scheduler == 'piecewise':
        boundaries = [step_per_epoch * e for e in [30, 60, 80]]
        values = [base_lr * (0.1**i) for i in range(len(boundaries) + 1)]
        learning_rate = fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values)
    elif lr_scheduler == 'cosine':
        learning_rate = fluid.layers.cosine_decay(base_lr, step_per_epoch,
                                                  FLAGS.epoch)
    else:
        raise ValueError(
            "Expected lr_scheduler in ['piecewise', 'cosine'], but got {}".
            format(lr_scheduler))
L
LielinJiang 已提交
56 57 58 59 60 61

    learning_rate = fluid.layers.linear_lr_warmup(
        learning_rate=learning_rate,
        warmup_steps=5 * step_per_epoch,
        start_lr=0.,
        end_lr=base_lr)
62

L
LielinJiang 已提交
63 64 65 66 67
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=momentum,
        regularization=fluid.regularizer.L2Decay(weight_decay),
        parameter_list=parameter_list)
68

L
LielinJiang 已提交
69 70 71 72 73 74 75
    return optimizer


def main():
    device = set_device(FLAGS.device)
    fluid.enable_dygraph(device) if FLAGS.dynamic else None

L
LielinJiang 已提交
76 77
    model = models.__dict__[FLAGS.arch](pretrained=FLAGS.eval_only and
                                        not FLAGS.resume)
L
LielinJiang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    if FLAGS.resume is not None:
        model.load(FLAGS.resume)

    inputs = [Input([None, 3, 224, 224], 'float32', name='image')]
    labels = [Input([None, 1], 'int64', name='label')]

    train_dataset = ImageNetDataset(
        os.path.join(FLAGS.data, 'train'), mode='train')
    val_dataset = ImageNetDataset(os.path.join(FLAGS.data, 'val'), mode='val')

    optim = make_optimizer(
        np.ceil(
            len(train_dataset) * 1. / FLAGS.batch_size / ParallelEnv().nranks),
        parameter_list=model.parameters())

    model.prepare(optim, CrossEntropy(), Accuracy(topk=(1, 5)), inputs, labels)

    if FLAGS.eval_only:
        model.evaluate(
            val_dataset,
            batch_size=FLAGS.batch_size,
            num_workers=FLAGS.num_workers)
        return

    output_dir = os.path.join(FLAGS.output_dir, FLAGS.arch,
                              time.strftime('%Y-%m-%d-%H-%M',
                                            time.localtime()))
    if ParallelEnv().local_rank == 0 and not os.path.exists(output_dir):
        os.makedirs(output_dir)

    model.fit(train_dataset,
              val_dataset,
              batch_size=FLAGS.batch_size,
              epochs=FLAGS.epoch,
              save_dir=output_dir,
              num_workers=FLAGS.num_workers)


if __name__ == '__main__':
    parser = argparse.ArgumentParser("Resnet Training on ImageNet")
    parser.add_argument(
        'data',
        metavar='DIR',
        help='path to dataset '
        '(should have subdirectories named "train" and "val"')
    parser.add_argument(
        "--arch", type=str, default='resnet50', help="model name")
    parser.add_argument(
        "--device", type=str, default='gpu', help="device to run, cpu or gpu")
    parser.add_argument(
        "-d", "--dynamic", action='store_true', help="enable dygraph mode")
    parser.add_argument(
L
LielinJiang 已提交
131
        "-e", "--epoch", default=90, type=int, help="number of epoch")
L
LielinJiang 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    parser.add_argument(
        '--lr',
        '--learning-rate',
        default=0.1,
        type=float,
        metavar='LR',
        help='initial learning rate')
    parser.add_argument(
        "-b", "--batch-size", default=64, type=int, help="batch size")
    parser.add_argument(
        "-n", "--num-workers", default=4, type=int, help="dataloader workers")
    parser.add_argument(
        "--output-dir", type=str, default='output', help="save dir")
    parser.add_argument(
        "-r",
        "--resume",
        default=None,
        type=str,
        help="checkpoint path to resume")
    parser.add_argument(
        "--eval-only", action='store_true', help="enable dygraph mode")
153 154 155 156 157 158 159 160
    parser.add_argument(
        "--lr-scheduler",
        default='piecewise',
        type=str,
        help="learning rate scheduler")
    parser.add_argument(
        "--weight-decay", default=1e-4, type=float, help="weight decay")
    parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
L
LielinJiang 已提交
161 162 163
    FLAGS = parser.parse_args()
    assert FLAGS.data, "error: must provide data path"
    main()