train.py 5.0 KB
Newer Older
Q
qingqing01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Q
qingqing01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
import sys
import random
import numpy as np

import argparse
import functools

import paddle.fluid.profiler as profiler
import paddle.fluid as fluid

L
LielinJiang 已提交
27 28
from paddle.incubate.hapi.model import Input, set_device
from paddle.incubate.hapi.vision.transforms import BatchCompose
Q
qingqing01 已提交
29 30

from utility import add_arguments, print_arguments
31
from utility import SeqAccuracy, LoggerCallBack
Q
qingqing01 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
from seq2seq_attn import Seq2SeqAttModel, WeightCrossEntropy
import data

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   32,           "Minibatch size.")
add_arg('epoch',             int,   30,           "Epoch number.")
add_arg('num_workers',       int,   0,            "workers number.")
add_arg('lr',                float, 0.001,        "Learning rate.")
add_arg('lr_decay_strategy', str,   "",           "Learning rate decay strategy.")
add_arg('checkpoint_path',   str,   "checkpoint", "The directory the model to be saved to.")
add_arg('train_images',      str,   None,         "The directory of images to be used for training.")
add_arg('train_list',        str,   None,         "The list file of images to be used for training.")
add_arg('test_images',       str,   None,         "The directory of images to be used for test.")
add_arg('test_list',         str,   None,         "The list file of images to be used for training.")
add_arg('resume_path',       str,   None,         "The init model file of directory.")
add_arg('use_gpu',           bool,  True,         "Whether use GPU to train.")
# model hyper paramters
add_arg('encoder_size',      int,   200,     "Encoder size.")
add_arg('decoder_size',      int,   128,     "Decoder size.")
add_arg('embedding_dim',     int,   128,     "Word vector dim.")
add_arg('num_classes',       int,   95,     "Number classes.")
add_arg('gradient_clip',     float, 5.0,     "Gradient clip value.")
add_arg('dynamic',           bool,  False,      "Whether to use dygraph.")
# yapf: enable


def main(FLAGS):
    device = set_device("gpu" if FLAGS.use_gpu else "cpu")
    fluid.enable_dygraph(device) if FLAGS.dynamic else None

    model = Seq2SeqAttModel(
        encoder_size=FLAGS.encoder_size,
        decoder_size=FLAGS.decoder_size,
        emb_dim=FLAGS.embedding_dim,
        num_classes=FLAGS.num_classes)

    lr = FLAGS.lr
    if FLAGS.lr_decay_strategy == "piecewise_decay":
        learning_rate = fluid.layers.piecewise_decay(
            [200000, 250000], [lr, lr * 0.1, lr * 0.01])
    else:
        learning_rate = lr
    grad_clip = fluid.clip.GradientClipByGlobalNorm(FLAGS.gradient_clip)
    optimizer = fluid.optimizer.Adam(
        learning_rate=learning_rate,
        parameter_list=model.parameters(),
        grad_clip=grad_clip)

    # yapf: disable
    inputs = [
        Input([None,1,48,384], "float32", name="pixel"),
        Input([None, None], "int64", name="label_in"),
    ]
    labels = [
        Input([None, None], "int64", name="label_out"),
        Input([None, None], "float32", name="mask"),
    ]
    # yapf: enable

    model.prepare(
        optimizer,
        WeightCrossEntropy(),
        SeqAccuracy(),
        inputs=inputs,
        labels=labels)

    train_dataset = data.train()
Q
qingqing01 已提交
101
    train_collate_fn = BatchCompose(
Q
qingqing01 已提交
102
        [data.Resize(), data.Normalize(), data.PadTarget()])
Q
qingqing01 已提交
103
    train_sampler = data.BatchSampler(
Q
qingqing01 已提交
104 105 106 107 108 109 110 111 112
        train_dataset, batch_size=FLAGS.batch_size, shuffle=True)
    train_loader = fluid.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        places=device,
        num_workers=FLAGS.num_workers,
        return_list=True,
        collate_fn=train_collate_fn)
    test_dataset = data.test()
Q
qingqing01 已提交
113
    test_collate_fn = BatchCompose(
Q
qingqing01 已提交
114
        [data.Resize(), data.Normalize(), data.PadTarget()])
Q
qingqing01 已提交
115
    test_sampler = data.BatchSampler(
Q
qingqing01 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        test_dataset,
        batch_size=FLAGS.batch_size,
        drop_last=False,
        shuffle=False)
    test_loader = fluid.io.DataLoader(
        test_dataset,
        batch_sampler=test_sampler,
        places=device,
        num_workers=0,
        return_list=True,
        collate_fn=test_collate_fn)

    model.fit(train_data=train_loader,
              eval_data=test_loader,
              epochs=FLAGS.epoch,
              save_dir=FLAGS.checkpoint_path,
132
              callbacks=[LoggerCallBack(10, 2, FLAGS.batch_size)])
Q
qingqing01 已提交
133 134 135 136 137 138


if __name__ == '__main__':
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    main(FLAGS)