train.py 5.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function

import os
import sys
import random
import numpy as np

import argparse
import functools

import paddle.fluid.profiler as profiler
import paddle.fluid as fluid

from hapi.model import Input, set_device

from utility import add_arguments, print_arguments
from utility import SeqAccuracy, MyProgBarLogger
from seq2seq_attn import Seq2SeqAttModel, WeightCrossEntropy
import data

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   32,           "Minibatch size.")
add_arg('epoch',             int,   30,           "Epoch number.")
add_arg('num_workers',       int,   0,            "workers number.")
add_arg('lr',                float, 0.001,        "Learning rate.")
add_arg('lr_decay_strategy', str,   "",           "Learning rate decay strategy.")
add_arg('checkpoint_path',   str,   "checkpoint", "The directory the model to be saved to.")
add_arg('train_images',      str,   None,         "The directory of images to be used for training.")
add_arg('train_list',        str,   None,         "The list file of images to be used for training.")
add_arg('test_images',       str,   None,         "The directory of images to be used for test.")
add_arg('test_list',         str,   None,         "The list file of images to be used for training.")
add_arg('resume_path',       str,   None,         "The init model file of directory.")
add_arg('use_gpu',           bool,  True,         "Whether use GPU to train.")
# model hyper paramters
add_arg('encoder_size',      int,   200,     "Encoder size.")
add_arg('decoder_size',      int,   128,     "Decoder size.")
add_arg('embedding_dim',     int,   128,     "Word vector dim.")
add_arg('num_classes',       int,   95,     "Number classes.")
add_arg('gradient_clip',     float, 5.0,     "Gradient clip value.")
add_arg('dynamic',           bool,  False,      "Whether to use dygraph.")
# yapf: enable


def main(FLAGS):
    device = set_device("gpu" if FLAGS.use_gpu else "cpu")
    fluid.enable_dygraph(device) if FLAGS.dynamic else None

    model = Seq2SeqAttModel(
        encoder_size=FLAGS.encoder_size,
        decoder_size=FLAGS.decoder_size,
        emb_dim=FLAGS.embedding_dim,
        num_classes=FLAGS.num_classes)

    lr = FLAGS.lr
    if FLAGS.lr_decay_strategy == "piecewise_decay":
        learning_rate = fluid.layers.piecewise_decay(
            [200000, 250000], [lr, lr * 0.1, lr * 0.01])
    else:
        learning_rate = lr
    grad_clip = fluid.clip.GradientClipByGlobalNorm(FLAGS.gradient_clip)
    optimizer = fluid.optimizer.Adam(
        learning_rate=learning_rate,
        parameter_list=model.parameters(),
        grad_clip=grad_clip)

    # yapf: disable
    inputs = [
        Input([None,1,48,384], "float32", name="pixel"),
        Input([None, None], "int64", name="label_in"),
    ]
    labels = [
        Input([None, None], "int64", name="label_out"),
        Input([None, None], "float32", name="mask"),
    ]
    # yapf: enable

    model.prepare(
        optimizer,
        WeightCrossEntropy(),
        SeqAccuracy(),
        inputs=inputs,
        labels=labels)

    train_dataset = data.train()
    train_collate_fn = data.BatchCompose(
        [data.Resize(), data.Normalize(), data.PadTarget()])
    train_sampler = data.MyBatchSampler(
        train_dataset, batch_size=FLAGS.batch_size, shuffle=True)
    train_loader = fluid.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        places=device,
        num_workers=FLAGS.num_workers,
        return_list=True,
        collate_fn=train_collate_fn)
    test_dataset = data.test()
    test_collate_fn = data.BatchCompose(
        [data.Resize(), data.Normalize(), data.PadTarget()])
    test_sampler = data.MyBatchSampler(
        test_dataset,
        batch_size=FLAGS.batch_size,
        drop_last=False,
        shuffle=False)
    test_loader = fluid.io.DataLoader(
        test_dataset,
        batch_sampler=test_sampler,
        places=device,
        num_workers=0,
        return_list=True,
        collate_fn=test_collate_fn)

    model.fit(train_data=train_loader,
              eval_data=test_loader,
              epochs=FLAGS.epoch,
              save_dir=FLAGS.checkpoint_path,
              callbacks=[MyProgBarLogger(10, 2, FLAGS.batch_size)])


if __name__ == '__main__':
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
    main(FLAGS)