# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import sys import random import numpy as np import argparse import functools import paddle.fluid.profiler as profiler import paddle.fluid as fluid from paddle.incubate.hapi.model import Input, set_device from paddle.incubate.hapi.vision.transforms import BatchCompose from utility import add_arguments, print_arguments from utility import SeqAccuracy, LoggerCallBack from seq2seq_attn import Seq2SeqAttModel, WeightCrossEntropy import data parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('batch_size', int, 32, "Minibatch size.") add_arg('epoch', int, 30, "Epoch number.") add_arg('num_workers', int, 0, "workers number.") add_arg('lr', float, 0.001, "Learning rate.") add_arg('lr_decay_strategy', str, "", "Learning rate decay strategy.") add_arg('checkpoint_path', str, "checkpoint", "The directory the model to be saved to.") add_arg('train_images', str, None, "The directory of images to be used for training.") add_arg('train_list', str, None, "The list file of images to be used for training.") add_arg('test_images', str, None, "The directory of images to be used for test.") add_arg('test_list', str, None, "The list file of images to be used for training.") add_arg('resume_path', str, None, "The init model file of directory.") add_arg('use_gpu', bool, True, "Whether use GPU to train.") # model hyper paramters add_arg('encoder_size', int, 200, "Encoder size.") add_arg('decoder_size', int, 128, "Decoder size.") add_arg('embedding_dim', int, 128, "Word vector dim.") add_arg('num_classes', int, 95, "Number classes.") add_arg('gradient_clip', float, 5.0, "Gradient clip value.") add_arg('dynamic', bool, False, "Whether to use dygraph.") # yapf: enable def main(FLAGS): device = set_device("gpu" if FLAGS.use_gpu else "cpu") fluid.enable_dygraph(device) if FLAGS.dynamic else None model = Seq2SeqAttModel( encoder_size=FLAGS.encoder_size, decoder_size=FLAGS.decoder_size, emb_dim=FLAGS.embedding_dim, num_classes=FLAGS.num_classes) lr = FLAGS.lr if FLAGS.lr_decay_strategy == "piecewise_decay": learning_rate = fluid.layers.piecewise_decay( [200000, 250000], [lr, lr * 0.1, lr * 0.01]) else: learning_rate = lr grad_clip = fluid.clip.GradientClipByGlobalNorm(FLAGS.gradient_clip) optimizer = fluid.optimizer.Adam( learning_rate=learning_rate, parameter_list=model.parameters(), grad_clip=grad_clip) # yapf: disable inputs = [ Input([None,1,48,384], "float32", name="pixel"), Input([None, None], "int64", name="label_in"), ] labels = [ Input([None, None], "int64", name="label_out"), Input([None, None], "float32", name="mask"), ] # yapf: enable model.prepare( optimizer, WeightCrossEntropy(), SeqAccuracy(), inputs=inputs, labels=labels) train_dataset = data.train() train_collate_fn = BatchCompose( [data.Resize(), data.Normalize(), data.PadTarget()]) train_sampler = data.BatchSampler( train_dataset, batch_size=FLAGS.batch_size, shuffle=True) train_loader = fluid.io.DataLoader( train_dataset, batch_sampler=train_sampler, places=device, num_workers=FLAGS.num_workers, return_list=True, collate_fn=train_collate_fn) test_dataset = data.test() test_collate_fn = BatchCompose( [data.Resize(), data.Normalize(), data.PadTarget()]) test_sampler = data.BatchSampler( test_dataset, batch_size=FLAGS.batch_size, drop_last=False, shuffle=False) test_loader = fluid.io.DataLoader( test_dataset, batch_sampler=test_sampler, places=device, num_workers=0, return_list=True, collate_fn=test_collate_fn) model.fit(train_data=train_loader, eval_data=test_loader, epochs=FLAGS.epoch, save_dir=FLAGS.checkpoint_path, callbacks=[LoggerCallBack(10, 2, FLAGS.batch_size)]) if __name__ == '__main__': FLAGS = parser.parse_args() print_arguments(FLAGS) main(FLAGS)