train.py 2.8 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
G
guosheng 已提交
17
import random
G
guosheng 已提交
18 19 20 21 22 23
from functools import partial

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.io import DataLoader

24
from hapi.model import Input, set_device
G
guosheng 已提交
25 26 27
from args import parse_args
from seq2seq_base import BaseModel, CrossEntropyCriterion
from seq2seq_attn import AttentionModel
G
guosheng 已提交
28
from reader import create_data_loader
G
guosheng 已提交
29
from utility import PPL, TrainCallback
G
guosheng 已提交
30 31


G
guosheng 已提交
32 33
def do_train(args):
    device = set_device("gpu" if args.use_gpu else "cpu")
G
guosheng 已提交
34 35 36 37 38
    fluid.enable_dygraph(device) if args.eager_run else None

    if args.enable_ce:
        fluid.default_main_program().random_seed = 102
        fluid.default_startup_program().random_seed = 102
G
guosheng 已提交
39 40 41 42 43 44 45 46 47

    # define model
    inputs = [
        Input(
            [None, None], "int64", name="src_word"),
        Input(
            [None], "int64", name="src_length"),
        Input(
            [None, None], "int64", name="trg_word"),
G
guosheng 已提交
48 49
    ]
    labels = [
G
guosheng 已提交
50 51
        Input(
            [None], "int64", name="trg_length"),
G
guosheng 已提交
52 53
        Input(
            [None, None, 1], "int64", name="label"),
G
guosheng 已提交
54 55
    ]

G
guosheng 已提交
56
    # def dataloader
G
guosheng 已提交
57
    train_loader, eval_loader = create_data_loader(args, device)
G
guosheng 已提交
58

G
guosheng 已提交
59 60 61 62
    model_maker = AttentionModel if args.attention else BaseModel
    model = model_maker(args.src_vocab_size, args.tar_vocab_size,
                        args.hidden_size, args.hidden_size, args.num_layers,
                        args.dropout)
G
guosheng 已提交
63
    grad_clip = fluid.clip.GradientClipByGlobalNorm(
G
guosheng 已提交
64
        clip_norm=args.max_grad_norm)
G
guosheng 已提交
65 66 67 68 69
    optimizer = fluid.optimizer.Adam(
        learning_rate=args.learning_rate,
        parameter_list=model.parameters(),
        grad_clip=grad_clip)

70
    ppl_metric = PPL(reset_freq=100)  # ppl for every 100 batches
G
guosheng 已提交
71
    model.prepare(
G
guosheng 已提交
72 73 74 75
        optimizer,
        CrossEntropyCriterion(),
        ppl_metric,
        inputs=inputs,
G
guosheng 已提交
76 77
        labels=labels,
        device=device)
G
guosheng 已提交
78
    model.fit(train_data=train_loader,
G
guosheng 已提交
79
              eval_data=eval_loader,
G
guosheng 已提交
80
              epochs=args.max_epoch,
G
guosheng 已提交
81 82
              eval_freq=1,
              save_freq=1,
G
guosheng 已提交
83
              save_dir=args.model_path,
G
guosheng 已提交
84
              callbacks=[TrainCallback(ppl_metric, args.log_freq)])
G
guosheng 已提交
85 86 87 88 89


if __name__ == "__main__":
    args = parse_args()
    do_train(args)