predict.py 4.1 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import io
import random
from functools import partial

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.layers.utils import flatten
from paddle.fluid.io import DataLoader

26
from hapi.model import Input, set_device
G
guosheng 已提交
27 28
from args import parse_args
from seq2seq_base import BaseInferModel
29
from seq2seq_attn import AttentionInferModel
G
guosheng 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
from reader import Seq2SeqDataset, Seq2SeqBatchSampler, SortType, prepare_infer_input


def post_process_seq(seq, bos_idx, eos_idx, output_bos=False,
                     output_eos=False):
    """
    Post-process the decoded sequence.
    """
    eos_pos = len(seq) - 1
    for i, idx in enumerate(seq):
        if idx == eos_idx:
            eos_pos = i
            break
    seq = [
        idx for idx in seq[:eos_pos + 1]
        if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)
    ]
    return seq


def do_predict(args):
    device = set_device("gpu" if args.use_gpu else "cpu")
    fluid.enable_dygraph(device) if args.eager_run else None

    # define model
    inputs = [
        Input(
            [None, None], "int64", name="src_word"),
        Input(
            [None], "int64", name="src_length"),
    ]

    # def dataloader
    dataset = Seq2SeqDataset(
        fpattern=args.infer_file,
        src_vocab_fpath=args.vocab_prefix + "." + args.src_lang,
        trg_vocab_fpath=args.vocab_prefix + "." + args.tar_lang,
        token_delimiter=None,
        start_mark="<s>",
        end_mark="</s>",
        unk_mark="<unk>")
    trg_idx2word = Seq2SeqDataset.load_dict(
        dict_path=args.vocab_prefix + "." + args.tar_lang, reverse=True)
    (args.src_vocab_size, args.trg_vocab_size, bos_id, eos_id,
     unk_id) = dataset.get_vocab_summary()
    batch_sampler = Seq2SeqBatchSampler(
        dataset=dataset, use_token_batch=False, batch_size=args.batch_size)
    data_loader = DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        places=device,
        collate_fn=partial(
            prepare_infer_input, bos_id=bos_id, eos_id=eos_id, pad_id=eos_id),
        num_workers=0,
        return_list=True)

86
    model_maker = AttentionInferModel if args.attention else BaseInferModel
G
guosheng 已提交
87 88 89 90 91 92 93 94 95 96 97 98
    model = model_maker(
        args.src_vocab_size,
        args.tar_vocab_size,
        args.hidden_size,
        args.hidden_size,
        args.num_layers,
        args.dropout,
        bos_id=bos_id,
        eos_id=eos_id,
        beam_size=args.beam_size,
        max_out_len=256)

G
guosheng 已提交
99
    model.prepare(inputs=inputs, device=device)
G
guosheng 已提交
100 101 102 103 104 105 106 107 108

    # load the trained model
    assert args.reload_model, (
        "Please set reload_model to load the infer model.")
    model.load(args.reload_model)

    # TODO(guosheng): use model.predict when support variant length
    with io.open(args.infer_output_file, 'w', encoding='utf-8') as f:
        for data in data_loader():
109
            finished_seq = model.test_batch(inputs=flatten(data))[0]
G
guosheng 已提交
110
            finished_seq = finished_seq[:, :, np.newaxis] if len(
111
                finished_seq.shape) == 2 else finished_seq
G
guosheng 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
            finished_seq = np.transpose(finished_seq, [0, 2, 1])
            for ins in finished_seq:
                for beam_idx, beam in enumerate(ins):
                    id_list = post_process_seq(beam, bos_id, eos_id)
                    word_list = [trg_idx2word[id] for id in id_list]
                    sequence = " ".join(word_list) + "\n"
                    f.write(sequence)
                    break


if __name__ == "__main__":
    args = parse_args()
    do_predict(args)