predict.py 5.6 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import six
import sys
G
guosheng 已提交
19
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
G
guosheng 已提交
20
from functools import partial
G
guosheng 已提交
21 22 23 24

import numpy as np
import paddle
import paddle.fluid as fluid
G
guosheng 已提交
25 26
from paddle.fluid.io import DataLoader
from paddle.fluid.layers.utils import flatten
G
guosheng 已提交
27 28 29 30

from utils.configure import PDConfig
from utils.check import check_gpu, check_version

G
guosheng 已提交
31 32
from model import Input, set_device
from reader import prepare_infer_input, Seq2SeqDataset, Seq2SeqBatchSampler
G
guosheng 已提交
33
from transformer import InferTransformer, position_encoding_init
G
guosheng 已提交
34 35


G
guosheng 已提交
36 37
def post_process_seq(seq, bos_idx, eos_idx, output_bos=False,
                     output_eos=False):
G
guosheng 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    """
    Post-process the decoded sequence.
    """
    eos_pos = len(seq) - 1
    for i, idx in enumerate(seq):
        if idx == eos_idx:
            eos_pos = i
            break
    seq = [
        idx for idx in seq[:eos_pos + 1]
        if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)
    ]
    return seq


def do_predict(args):
G
guosheng 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    device = set_device("gpu" if args.use_cuda else "cpu")
    fluid.enable_dygraph(device) if args.eager_run else None

    inputs = [
        Input([None, None], "int64", name="src_word"),
        Input([None, None], "int64", name="src_pos"),
        Input([None, args.n_head, None, None],
              "float32",
              name="src_slf_attn_bias"),
        Input([None, args.n_head, None, None],
              "float32",
              name="trg_src_attn_bias"),
    ]

    # define data
    dataset = Seq2SeqDataset(fpattern=args.predict_file,
                             src_vocab_fpath=args.src_vocab_fpath,
                             trg_vocab_fpath=args.trg_vocab_fpath,
                             token_delimiter=args.token_delimiter,
                             start_mark=args.special_token[0],
                             end_mark=args.special_token[1],
                             unk_mark=args.special_token[2])
G
guosheng 已提交
76
    args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
G
guosheng 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        args.unk_idx = dataset.get_vocab_summary()
    trg_idx2word = Seq2SeqDataset.load_dict(dict_path=args.trg_vocab_fpath,
                                            reverse=True)
    batch_sampler = Seq2SeqBatchSampler(dataset=dataset,
                                        use_token_batch=False,
                                        batch_size=args.batch_size,
                                        max_length=args.max_length)
    data_loader = DataLoader(dataset=dataset,
                             batch_sampler=batch_sampler,
                             places=device,
                             feed_list=[x.forward() for x in inputs],
                             collate_fn=partial(prepare_infer_input,
                                                src_pad_idx=args.eos_idx,
                                                n_head=args.n_head),
                             num_workers=0,
                             return_list=True)

    # define model
    transformer = InferTransformer(args.src_vocab_size,
                                   args.trg_vocab_size,
                                   args.max_length + 1,
                                   args.n_layer,
                                   args.n_head,
                                   args.d_key,
                                   args.d_value,
                                   args.d_model,
                                   args.d_inner_hid,
                                   args.prepostprocess_dropout,
                                   args.attention_dropout,
                                   args.relu_dropout,
                                   args.preprocess_cmd,
                                   args.postprocess_cmd,
                                   args.weight_sharing,
                                   args.bos_idx,
                                   args.eos_idx,
                                   beam_size=args.beam_size,
                                   max_out_len=args.max_out_len)
    transformer.prepare(inputs=inputs)

    # load the trained model
    assert args.init_from_params, (
        "Please set init_from_params to load the infer model.")
    transformer.load(os.path.join(args.init_from_params, "transformer"))

    # TODO: use model.predict when support variant length
    f = open(args.output_file, "wb")
    for data in data_loader():
        finished_seq = transformer.test(inputs=flatten(data))[0]
        finished_seq = np.transpose(finished_seq, [0, 2, 1])
        for ins in finished_seq:
            for beam_idx, beam in enumerate(ins):
                if beam_idx >= args.n_best: break
                id_list = post_process_seq(beam, args.bos_idx,
                                           args.eos_idx)
                word_list = [trg_idx2word[id] for id in id_list]
                sequence = b" ".join(word_list) + b"\n"
                f.write(sequence)
G
guosheng 已提交
134 135 136 137 138 139 140 141 142 143


if __name__ == "__main__":
    args = PDConfig(yaml_file="./transformer.yaml")
    args.build()
    args.Print()
    check_gpu(args.use_cuda)
    check_version()

    do_predict(args)