# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import six import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from functools import partial import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.io import DataLoader from paddle.fluid.layers.utils import flatten from utils.configure import PDConfig from utils.check import check_gpu, check_version from model import Input, set_device from reader import prepare_infer_input, Seq2SeqDataset, Seq2SeqBatchSampler from transformer import InferTransformer, position_encoding_init def post_process_seq(seq, bos_idx, eos_idx, output_bos=False, output_eos=False): """ Post-process the decoded sequence. """ eos_pos = len(seq) - 1 for i, idx in enumerate(seq): if idx == eos_idx: eos_pos = i break seq = [ idx for idx in seq[:eos_pos + 1] if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx) ] return seq def do_predict(args): device = set_device("gpu" if args.use_cuda else "cpu") fluid.enable_dygraph(device) if args.eager_run else None inputs = [ Input([None, None], "int64", name="src_word"), Input([None, None], "int64", name="src_pos"), Input([None, args.n_head, None, None], "float32", name="src_slf_attn_bias"), Input([None, args.n_head, None, None], "float32", name="trg_src_attn_bias"), ] # define data dataset = Seq2SeqDataset(fpattern=args.predict_file, src_vocab_fpath=args.src_vocab_fpath, trg_vocab_fpath=args.trg_vocab_fpath, token_delimiter=args.token_delimiter, start_mark=args.special_token[0], end_mark=args.special_token[1], unk_mark=args.special_token[2]) args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \ args.unk_idx = dataset.get_vocab_summary() trg_idx2word = Seq2SeqDataset.load_dict(dict_path=args.trg_vocab_fpath, reverse=True) batch_sampler = Seq2SeqBatchSampler(dataset=dataset, use_token_batch=False, batch_size=args.batch_size, max_length=args.max_length) data_loader = DataLoader(dataset=dataset, batch_sampler=batch_sampler, places=device, feed_list=[x.forward() for x in inputs], collate_fn=partial(prepare_infer_input, src_pad_idx=args.eos_idx, n_head=args.n_head), num_workers=0, return_list=True) # define model transformer = InferTransformer(args.src_vocab_size, args.trg_vocab_size, args.max_length + 1, args.n_layer, args.n_head, args.d_key, args.d_value, args.d_model, args.d_inner_hid, args.prepostprocess_dropout, args.attention_dropout, args.relu_dropout, args.preprocess_cmd, args.postprocess_cmd, args.weight_sharing, args.bos_idx, args.eos_idx, beam_size=args.beam_size, max_out_len=args.max_out_len) transformer.prepare(inputs=inputs) # load the trained model assert args.init_from_params, ( "Please set init_from_params to load the infer model.") transformer.load(os.path.join(args.init_from_params, "transformer")) # TODO: use model.predict when support variant length f = open(args.output_file, "wb") for data in data_loader(): finished_seq = transformer.test(inputs=flatten(data))[0] finished_seq = np.transpose(finished_seq, [0, 2, 1]) for ins in finished_seq: for beam_idx, beam in enumerate(ins): if beam_idx >= args.n_best: break id_list = post_process_seq(beam, args.bos_idx, args.eos_idx) word_list = [trg_idx2word[id] for id in id_list] sequence = b" ".join(word_list) + b"\n" f.write(sequence) if __name__ == "__main__": args = PDConfig(yaml_file="./transformer.yaml") args.build() args.Print() check_gpu(args.use_cuda) check_version() do_predict(args)