train.py 2.8 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
G
guosheng 已提交
19
import random
G
guosheng 已提交
20 21 22 23 24 25
from functools import partial

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.io import DataLoader

G
guosheng 已提交
26
from model import Input, set_device
G
guosheng 已提交
27
from metrics import Metric
G
guosheng 已提交
28
from callbacks import ProgBarLogger
G
guosheng 已提交
29 30 31
from args import parse_args
from seq2seq_base import BaseModel, CrossEntropyCriterion
from seq2seq_attn import AttentionModel
G
guosheng 已提交
32
from reader import create_data_loader
G
guosheng 已提交
33
from utility import PPL, TrainCallback
G
guosheng 已提交
34 35


G
guosheng 已提交
36 37
def do_train(args):
    device = set_device("gpu" if args.use_gpu else "cpu")
G
guosheng 已提交
38 39 40 41 42
    fluid.enable_dygraph(device) if args.eager_run else None

    if args.enable_ce:
        fluid.default_main_program().random_seed = 102
        fluid.default_startup_program().random_seed = 102
G
guosheng 已提交
43 44 45 46 47 48 49 50 51

    # define model
    inputs = [
        Input(
            [None, None], "int64", name="src_word"),
        Input(
            [None], "int64", name="src_length"),
        Input(
            [None, None], "int64", name="trg_word"),
G
guosheng 已提交
52 53
    ]
    labels = [
G
guosheng 已提交
54 55
        Input(
            [None], "int64", name="trg_length"),
G
guosheng 已提交
56 57
        Input(
            [None, None, 1], "int64", name="label"),
G
guosheng 已提交
58 59
    ]

G
guosheng 已提交
60
    # def dataloader
G
guosheng 已提交
61
    train_loader, eval_loader = create_data_loader(args, device)
G
guosheng 已提交
62

G
guosheng 已提交
63 64 65 66
    model_maker = AttentionModel if args.attention else BaseModel
    model = model_maker(args.src_vocab_size, args.tar_vocab_size,
                        args.hidden_size, args.hidden_size, args.num_layers,
                        args.dropout)
G
guosheng 已提交
67
    grad_clip = fluid.clip.GradientClipByGlobalNorm(
G
guosheng 已提交
68
        clip_norm=args.max_grad_norm)
G
guosheng 已提交
69 70 71 72 73
    optimizer = fluid.optimizer.Adam(
        learning_rate=args.learning_rate,
        parameter_list=model.parameters(),
        grad_clip=grad_clip)

G
guosheng 已提交
74
    ppl_metric = PPL()
G
guosheng 已提交
75
    model.prepare(
G
guosheng 已提交
76 77 78 79 80
        optimizer,
        CrossEntropyCriterion(),
        ppl_metric,
        inputs=inputs,
        labels=labels)
G
guosheng 已提交
81
    model.fit(train_data=train_loader,
G
guosheng 已提交
82
              eval_data=eval_loader,
G
guosheng 已提交
83
              epochs=args.max_epoch,
G
guosheng 已提交
84 85
              eval_freq=1,
              save_freq=1,
G
guosheng 已提交
86
              save_dir=args.model_path,
G
guosheng 已提交
87
              callbacks=[TrainCallback(ppl_metric, args.log_freq)])
G
guosheng 已提交
88 89 90 91 92


if __name__ == "__main__":
    args = parse_args()
    do_train(args)