train.py 4.1 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import six
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
G
guosheng 已提交
20
import random
G
guosheng 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
from functools import partial

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable
from paddle.fluid.io import DataLoader
from paddle.fluid.dygraph_grad_clip import GradClipByGlobalNorm

import reader
from args import parse_args
from seq2seq_base import BaseModel, CrossEntropyCriterion
from seq2seq_attn import AttentionModel
from model import Input, set_device
from callbacks import ProgBarLogger
G
guosheng 已提交
36
from reader import Seq2SeqDataset, Seq2SeqBatchSampler, SortType, prepare_train_input
G
guosheng 已提交
37 38 39 40


def do_train(args):
    device = set_device("gpu" if args.use_gpu else "cpu")
G
guosheng 已提交
41 42 43 44 45 46
    fluid.enable_dygraph(device) if args.eager_run else None

    if args.enable_ce:
        fluid.default_main_program().random_seed = 102
        fluid.default_startup_program().random_seed = 102
        args.shuffle = False
G
guosheng 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60

    # define model
    inputs = [
        Input(
            [None, None], "int64", name="src_word"),
        Input(
            [None], "int64", name="src_length"),
        Input(
            [None, None], "int64", name="trg_word"),
        Input(
            [None], "int64", name="trg_length"),
    ]
    labels = [Input([None, None, 1], "int64", name="label"), ]

G
guosheng 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    # def dataloader
    data_loaders = [None, None]
    data_prefixes = [args.train_data_prefix, args.eval_data_prefix
                     ] if args.eval_data_prefix else [args.train_data_prefix]
    for i, data_prefix in enumerate(data_prefixes):
        dataset = Seq2SeqDataset(
            fpattern=data_prefix + "." + args.src_lang,
            trg_fpattern=data_prefix + "." + args.tar_lang,
            src_vocab_fpath=args.vocab_prefix + "." + args.src_lang,
            trg_vocab_fpath=args.vocab_prefix + "." + args.tar_lang,
            token_delimiter=None,
            start_mark="<s>",
            end_mark="</s>",
            unk_mark="<unk>")
        (args.src_vocab_size, args.trg_vocab_size, bos_id, eos_id,
         unk_id) = dataset.get_vocab_summary()
        batch_sampler = Seq2SeqBatchSampler(
            dataset=dataset,
            use_token_batch=False,
            batch_size=args.batch_size,
            pool_size=args.batch_size * 20,
            sort_type=SortType.POOL,
            shuffle=args.shuffle)
        data_loader = DataLoader(
            dataset=dataset,
            batch_sampler=batch_sampler,
            places=device,
            feed_list=None if fluid.in_dygraph_mode() else
            [x.forward() for x in inputs + labels],
            collate_fn=partial(
                prepare_train_input,
                bos_id=bos_id,
                eos_id=eos_id,
                pad_id=eos_id),
            num_workers=0,
            return_list=True)
        data_loaders[i] = data_loader
    train_loader, eval_loader = data_loaders

G
guosheng 已提交
100 101 102 103 104 105 106 107 108 109 110 111
    model = AttentionModel(args.src_vocab_size, args.tar_vocab_size,
                           args.hidden_size, args.hidden_size, args.num_layers,
                           args.dropout)

    model.prepare(
        fluid.optimizer.Adam(
            learning_rate=args.learning_rate,
            parameter_list=model.parameters()),
        CrossEntropyCriterion(),
        inputs=inputs,
        labels=labels)
    model.fit(train_data=train_loader,
G
guosheng 已提交
112
              eval_data=eval_loader,
G
guosheng 已提交
113 114 115
              epochs=1,
              eval_freq=1,
              save_freq=1,
G
guosheng 已提交
116
              log_freq=1,
G
guosheng 已提交
117 118 119 120 121 122
              verbose=2)


if __name__ == "__main__":
    args = parse_args()
    do_train(args)