train.py 8.0 KB
Newer Older
N
Nicky 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.nets as nets

IS_SPARSE = True
USE_GPU = False
BATCH_SIZE = 256
Y
Yu Yang 已提交
26

H
Helin Wang 已提交
27

Q
qijun 已提交
28
def get_usr_combined_features():
N
Nicky 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

    USR_DICT_SIZE = paddle.dataset.movielens.max_user_id() + 1

    uid = layers.data(name='user_id', shape=[1], dtype='int64')

    usr_emb = layers.embedding(
        input=uid,
        dtype='float32',
        size=[USR_DICT_SIZE, 32],
        param_attr='user_table',
        is_sparse=IS_SPARSE)

    usr_fc = layers.fc(input=usr_emb, size=32)

    USR_GENDER_DICT_SIZE = 2

    usr_gender_id = layers.data(name='gender_id', shape=[1], dtype='int64')

    usr_gender_emb = layers.embedding(
        input=usr_gender_id,
        size=[USR_GENDER_DICT_SIZE, 16],
        param_attr='gender_table',
        is_sparse=IS_SPARSE)

    usr_gender_fc = layers.fc(input=usr_gender_emb, size=16)

    USR_AGE_DICT_SIZE = len(paddle.dataset.movielens.age_table)
    usr_age_id = layers.data(name='age_id', shape=[1], dtype="int64")

    usr_age_emb = layers.embedding(
        input=usr_age_id,
        size=[USR_AGE_DICT_SIZE, 16],
        is_sparse=IS_SPARSE,
        param_attr='age_table')

    usr_age_fc = layers.fc(input=usr_age_emb, size=16)

    USR_JOB_DICT_SIZE = paddle.dataset.movielens.max_job_id() + 1
    usr_job_id = layers.data(name='job_id', shape=[1], dtype="int64")

    usr_job_emb = layers.embedding(
        input=usr_job_id,
        size=[USR_JOB_DICT_SIZE, 16],
        param_attr='job_table',
        is_sparse=IS_SPARSE)

    usr_job_fc = layers.fc(input=usr_job_emb, size=16)

    concat_embed = layers.concat(
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc], axis=1)

    usr_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
82
    return usr_combined_features
Y
Yu Yang 已提交
83

Q
qijun 已提交
84

Q
qijun 已提交
85
def get_mov_combined_features():
N
Nicky 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

    MOV_DICT_SIZE = paddle.dataset.movielens.max_movie_id() + 1

    mov_id = layers.data(name='movie_id', shape=[1], dtype='int64')

    mov_emb = layers.embedding(
        input=mov_id,
        dtype='float32',
        size=[MOV_DICT_SIZE, 32],
        param_attr='movie_table',
        is_sparse=IS_SPARSE)

    mov_fc = layers.fc(input=mov_emb, size=32)

    CATEGORY_DICT_SIZE = len(paddle.dataset.movielens.movie_categories())

    category_id = layers.data(
        name='category_id', shape=[1], dtype='int64', lod_level=1)

    mov_categories_emb = layers.embedding(
        input=category_id, size=[CATEGORY_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_categories_hidden = layers.sequence_pool(
        input=mov_categories_emb, pool_type="sum")

    MOV_TITLE_DICT_SIZE = len(paddle.dataset.movielens.get_movie_title_dict())

    mov_title_id = layers.data(
        name='movie_title', shape=[1], dtype='int64', lod_level=1)

    mov_title_emb = layers.embedding(
        input=mov_title_id, size=[MOV_TITLE_DICT_SIZE, 32], is_sparse=IS_SPARSE)

    mov_title_conv = nets.sequence_conv_pool(
        input=mov_title_emb,
        num_filters=32,
        filter_size=3,
        act="tanh",
        pool_type="sum")

    concat_embed = layers.concat(
        input=[mov_fc, mov_categories_hidden, mov_title_conv], axis=1)

    mov_combined_features = layers.fc(input=concat_embed, size=200, act="tanh")

Q
qijun 已提交
131
    return mov_combined_features
Q
qijun 已提交
132

Y
Yu Yang 已提交
133

N
Nicky 已提交
134
def inference_program():
Q
qijun 已提交
135 136
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()
Y
Yu Yang 已提交
137

N
Nicky 已提交
138 139
    inference = layers.cos_sim(X=usr_combined_features, Y=mov_combined_features)
    scale_infer = layers.scale(x=inference, scale=5.0)
Y
Yu Yang 已提交
140

N
Nicky 已提交
141
    return scale_infer
Y
Yu Yang 已提交
142 143


N
Nicky 已提交
144
def train_program():
Y
Yu Yang 已提交
145

N
Nicky 已提交
146
    scale_infer = inference_program()
Y
Yu Yang 已提交
147

N
Nicky 已提交
148 149 150
    label = layers.data(name='score', shape=[1], dtype='float32')
    square_cost = layers.square_error_cost(input=scale_infer, label=label)
    avg_cost = layers.mean(square_cost)
Y
Yu Yang 已提交
151

N
Nicky 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    return [avg_cost, scale_infer]


def optimizer_func():
    return fluid.optimizer.SGD(learning_rate=0.2)


def train(use_cuda, train_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    trainer = fluid.Trainer(
        train_func=train_program, place=place, optimizer_func=optimizer_func)

    feed_order = [
        'user_id', 'gender_id', 'age_id', 'job_id', 'movie_id', 'category_id',
        'movie_title', 'score'
    ]

    def event_handler(event):
        if isinstance(event, fluid.EndStepEvent):
            test_reader = paddle.batch(
                paddle.dataset.movielens.test(), batch_size=BATCH_SIZE)
            avg_cost_set = trainer.test(
                reader=test_reader, feed_order=feed_order)

            # get avg cost
            avg_cost = np.array(avg_cost_set).mean()

            print("avg_cost: %s" % avg_cost)

            if float(avg_cost) < 4:  # Change this number to adjust accuracy
                trainer.save_params(params_dirname)
                trainer.stop()
            else:
                print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
                                                              float(avg_cost)))
                if math.isnan(float(avg_cost)):
                    sys.exit("got NaN loss, training failed.")

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.movielens.train(), buf_size=8192),
        batch_size=BATCH_SIZE)

    trainer.train(
        num_epochs=1,
        event_handler=event_handler,
        reader=train_reader,
        feed_order=feed_order)


def infer(use_cuda, inference_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    inferencer = fluid.Inferencer(
        inference_program, param_path=params_dirname, place=place)

    # Use the first data from paddle.dataset.movielens.test() as input.
    # Use create_lod_tensor(data, lod, place) API to generate LoD Tensor,
    # where `data` is a list of sequences of index numbers, `lod` is
    # the level of detail (lod) info associated with `data`.
    # For example, data = [[10, 2, 3], [2, 3]] means that it contains
    # two sequences of indexes, of length 3 and 2, respectively.
    # Correspondingly, lod = [[3, 2]] contains one level of detail info,
    # indicating that `data` consists of two sequences of length 3 and 2.
    user_id = fluid.create_lod_tensor([[1]], [[1]], place)
    gender_id = fluid.create_lod_tensor([[1]], [[1]], place)
    age_id = fluid.create_lod_tensor([[0]], [[1]], place)
    job_id = fluid.create_lod_tensor([[10]], [[1]], place)
    movie_id = fluid.create_lod_tensor([[783]], [[1]], place)
    category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)
    movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]], [[5]],
                                          place)

    results = inferencer.infer(
        {
            'user_id': user_id,
            'gender_id': gender_id,
            'age_id': age_id,
            'job_id': job_id,
            'movie_id': movie_id,
            'category_id': category_id,
            'movie_title': movie_title
        },
        return_numpy=False)

    print("infer results: ", np.array(results[0]))


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "recommender_system.inference.model"
    train(
        use_cuda=use_cuda,
        train_program=train_program,
        params_dirname=params_dirname)
    infer(
        use_cuda=use_cuda,
        inference_program=inference_program,
        params_dirname=params_dirname)
Y
Yu Yang 已提交
252 253 254


if __name__ == '__main__':
N
Nicky 已提交
255
    main(USE_GPU)