README.en.md 32.1 KB
Newer Older
Y
Yi Wang 已提交
1 2
# Semantic Role Labeling

3
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/06.label_semantic_roles).
Y
Yi Wang 已提交
4

5 6
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).

Y
Yi Wang 已提交
7 8
## Background

M
Mimee 已提交
9
Natural language analysis techniques consist of lexical, syntactic, and semantic analysis. **Semantic Role Labeling (SRL)** is an instance of **Shallow Semantic Analysis**.
Y
Yi Wang 已提交
10

M
Mimee 已提交
11
In a sentence, a **predicate** states a property or a characterization of a *subject*, such as what it does and what it is like. The predicate represents the core of an event, whereas the words accompanying the predicate are **arguments**. A **semantic role** refers to the abstract role an argument of a predicate take on in the event, including *agent*, *patient*, *theme*, *experiencer*, *beneficiary*, *instrument*, *location*, *goal*, and *source*.
Y
Yi Wang 已提交
12

M
Mimee 已提交
13
In the following example of a Chinese sentence, "to encounter" is the predicate (*pred*); "Ming" is the *agent*; "Hong" is the *patient*; "yesterday" and "evening" are the *time*; finally, "the park" is the *location*.
Y
Yi Wang 已提交
14

M
Mimee 已提交
15
$$\mbox{[小明 Ming]}_{\mbox{Agent}}\mbox{[昨天 yesterday]}_{\mbox{Time}}\mbox{[晚上 evening]}_\mbox{Time}\mbox{在[公园 a park]}_{\mbox{Location}}\mbox{[遇到 to encounter]}_{\mbox{Predicate}}\mbox{了[小红 Hong]}_{\mbox{Patient}}\mbox{。}$$
Y
Yi Wang 已提交
16

M
Mimee 已提交
17
Instead of analyzing the semantic information, **Semantic Role Labeling** (**SRL**) identifies the relation between the predicate and the other constituents surrounding it. The predicate-argument structures are labeled as specific semantic roles. A wide range of natural language understanding tasks, including *information extraction*, *discourse analysis*, and *deepQA*. Research usually assumes a predicate of a sentence to be specified; the only task is to identify its arguments and their semantic roles.
Y
Yi Wang 已提交
18

M
Mimee 已提交
19 20 21 22 23 24 25
Conventional SRL systems mostly build on top of syntactic analysis, usually consisting of five steps:

1. Construct a syntax tree, as shown in Fig. 1
2. Identity the candidate arguments of the given predicate on the tree.
3. Prune the most unlikely candidate arguments.
4. Identify the real arguments, often by a binary classifier.
5. Multi-classify on results from step 4 to label the semantic roles. Steps 2 and 3 usually introduce hand-designed features based on syntactic analysis (step 1).
Y
Yi Wang 已提交
26 27 28


<div  align="center">
29
<img src="image/dependency_parsing_en.png" width = "80%" align=center /><br>
M
Mimee 已提交
30
Fig 1. Syntax tree
Y
Yi Wang 已提交
31 32 33
</div>


M
Mimee 已提交
34
However, a complete syntactic analysis requires identifying the relation among all constituents. Thus, the accuracy of SRL is sensitive to the preciseness of the syntactic analysis, making SRL challenging. To reduce its complexity and obtain some information on the syntactic structures, we often use *shallow syntactic analysis* a.k.a. partial parsing or chunking. Unlike complete syntactic analysis, which requires the construction of the complete parsing tree, *Shallow Syntactic Analysis* only requires identifying some independent constituents with relatively simple structures, such as verb phrases (chunk). To avoid difficulties in constructing a syntax tree with high accuracy, some work\[[1](#Reference)\] proposed semantic chunking-based SRL methods, which reduces SRL into a sequence tagging problem. Sequence tagging tasks classify syntactic chunks using **BIO representation**. For syntactic chunks forming role A, its first chunk receives the B-A tag (Begin) and the remaining ones receive the tag I-A (Inside); in the end, the chunks left out receive the tag O.
Y
Yi Wang 已提交
35 36 37 38

The BIO representation of above example is shown in Fig.1.

<div  align="center">
39
<img src="image/bio_example_en.png" width = "90%"  align=center /><br>
M
Mimee 已提交
40
Fig 2. BIO representation
Y
Yi Wang 已提交
41 42
</div>

M
Mimee 已提交
43 44 45 46 47
This example illustrates the simplicity of sequence tagging, since

1. It only relies on shallow syntactic analysis, reduces the precision requirement of syntactic analysis;
2. Pruning the candidate arguments is no longer necessary;
3. Arguments are identified and tagged at the same time. Simplifying the workflow reduces the risk of accumulating errors; oftentimes, methods that unify multiple steps boost performance.
Y
Yi Wang 已提交
48

M
Mimee 已提交
49
In this tutorial, our SRL system is built as an end-to-end system via a neural network. The system takes only text sequences as input, without using any syntactic parsing results or complex hand-designed features. The public dataset [CoNLL-2004 and CoNLL-2005 Shared Tasks](http://www.cs.upc.edu/~srlconll/) is used for the following task: given a sentence with predicates marked, identify the corresponding arguments and their semantic roles through sequence tagging.
Y
Yi Wang 已提交
50 51 52

## Model

53
**Recurrent Neural Networks** (*RNN*) are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike feed-forward neural networks, RNNs can model the dependencies between elements of sequences. As a variant of RNNs', LSTMs aim model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
Y
Yi Wang 已提交
54 55 56

### Stacked Recurrent Neural Network

M
Mimee 已提交
57
*Deep Neural Networks* can extract hierarchical representations. The higher layers can form relatively abstract/complex representations, based on primitive features discovered through the lower layers. Unfolding LSTMs through time results in a deep feed-forward neural network. This is because any computational path between the input at time $k < t$ to the output at time $t$ crosses several nonlinear layers. On the other hand, due to parameter sharing over time, LSTMs are also *shallow*; that is, the computation carried out at each time-step is just a linear transformation. Deep LSTM networks are typically constructed by stacking multiple LSTM layers on top of each other and taking the output from lower LSTM layer at time $t$ as the input of upper LSTM layer at time $t$. Deep, hierarchical neural networks can be efficient at representing some functions and modeling varying-length dependencies\[[2](#Reference)\].
M
Mimee 已提交
58

Y
Yi Wang 已提交
59

M
Mimee 已提交
60
However, in a deep LSTM network, any gradient propagated back in depth needs to traverse a large number of nonlinear steps. As a result, while LSTMs of 4 layers can be trained properly, those with 4-8 have much worse performance. Conventional LSTMs prevent back-propagated errors from vanishing or exploding by introducing shortcut connections to skip the intermediate nonlinear layers. Therefore, deep LSTMs can consider shortcut connections in depth as well.
Y
Yi Wang 已提交
61 62


M
Mimee 已提交
63
A single LSTM cell has three operations:
Y
Yi Wang 已提交
64

M
Mimee 已提交
65 66
1. input-to-hidden: map input $x$ to the input of the forget gates, input gates, memory cells and output gates by linear transformation (i.e., matrix mapping);
2. hidden-to-hidden: calculate forget gates, input gates, output gates and update memory cell, this is the main part of LSTMs;
M
Mimee 已提交
67 68 69
3. hidden-to-output: this part typically involves an activation operation on hidden states.

Based on the stacked LSTMs, we add shortcut connections: take the input-to-hidden from the previous layer as a new input and learn another linear transformation.
Y
Yi Wang 已提交
70

M
Mimee 已提交
71
Fig.3 illustrates the final stacked recurrent neural networks.
Y
Yi Wang 已提交
72

73
<p align="center">  
74
<img src="./image/stacked_lstm_en.png" width = "40%"  align=center><br>
Y
Yi Wang 已提交
75 76 77 78 79
Fig 3. Stacked Recurrent Neural Networks
</p>

### Bidirectional Recurrent Neural Network

M
Mimee 已提交
80
While LSTMs can summarize the history -- all the previous input seen up until now -- they can not see the future. Because most NLP (natural language processing) tasks provide the entirety of sentences, sequential learning can benefit from having the future encoded as well as the history.
Y
Yi Wang 已提交
81

M
Mimee 已提交
82
To address, we can design a bidirectional recurrent neural network by making a minor modification. A higher LSTM layer can process the sequence in reversed direction with regards to its immediate lower LSTM layer, i.e., deep LSTM layers take turns to train on input sequences from left-to-right and right-to-left. Therefore, LSTM layers at time-step $t$ can see both histories and the future, starting from the second layer. Fig. 4 illustrates the bidirectional recurrent neural networks.
Y
Yi Wang 已提交
83 84


85
<p align="center">  
86
<img src="./image/bidirectional_stacked_lstm_en.png" width = "60%" align=center><br>
Y
Yi Wang 已提交
87 88 89
Fig 4. Bidirectional LSTMs
</p>

M
Mimee 已提交
90
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks [machine translation](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.en.md)
Y
Yi Wang 已提交
91

M
Mimee 已提交
92
### Conditional Random Field (CRF)
Y
Yi Wang 已提交
93

M
Mimee 已提交
94
Typically, a neural network's lower layers learn representations while its very top layer learns the final task. These principles can guide our problem-solving approaches. In SRL tasks, a **Conditional Random Field** (*CRF*) is built on top of the network in order to perform the final prediction to tag sequences. It takes as input the representations provided by the last LSTM layer.
Y
Yi Wang 已提交
95 96


M
Mimee 已提交
97
The CRF is an undirected probabilistic graph with nodes denoting random variables and edges denoting dependencies between these variables. In essence, CRFs learn the conditional probability $P(Y|X)$, where $X = (x_1, x_2, ... , x_n)$ are sequences of input and $Y = (y_1, y_2, ... , y_n)$ are label sequences; to decode, simply search through $Y$ for a sequence that maximizes the conditional probability $P(Y|X)$, i.e., $Y^* = \mbox{arg max}_{Y} P(Y | X)$。
Y
Yi Wang 已提交
98

M
Mimee 已提交
99
Sequence tagging tasks do not assume a lot of conditional independence, because they are only concerned with the input and the output being linear sequences. Thus, the graph model of sequence tagging tasks is usually a simple chain or line, which results in a **Linear-Chain Conditional Random Field**, shown in Fig.5.
Y
Yi Wang 已提交
100

101
<p align="center">  
Y
Yi Wang 已提交
102 103 104 105
<img src="./image/linear_chain_crf.png" width = "35%" align=center><br>
Fig 5. Linear Chain Conditional Random Field used in SRL tasks
</p>

106
By the fundamental theorem of random fields \[[5](#Reference)\], the joint distribution over the label sequence $Y$ given $X$ has the form:
Y
Yi Wang 已提交
107 108 109 110

$$p(Y | X) = \frac{1}{Z(X)} \text{exp}\left(\sum_{i=1}^{n}\left(\sum_{j}\lambda_{j}t_{j} (y_{i - 1}, y_{i}, X, i) + \sum_{k} \mu_k s_k (y_i, X, i)\right)\right)$$


M
Mimee 已提交
111
where, $Z(X)$ is normalization constant, ${t_j}$ represents the feature functions defined on edges called the *transition feature*, which denotes the transition probabilities from $y_{i-1}$ to $y_i$ given input sequence $X$. ${s_k}$ represents the feature function defined on nodes, called the state feature, denoting the probability of $y_i$ given input sequence $X$. In addition, $\lambda_j$ and $\mu_k$ are weights corresponding to $t_j$ and $s_k$. Alternatively, $t$ and $s$ can be written in the same form that depends on $y_{i - 1}$, $y_i$, $X$, and $i$. Taking its summation over all nodes $i$, we have: $f_{k}(Y, X) = \sum_{i=1}^{n}f_k({y_{i - 1}, y_i, X, i})$, which defines the *feature function* $f$. Thus, $P(Y|X)$ can be written as:
Y
Yi Wang 已提交
112 113 114

$$p(Y|X, W) = \frac{1}{Z(X)}\text{exp}\sum_{k}\omega_{k}f_{k}(Y, X)$$

M
Mimee 已提交
115
where $\omega$ are the weights to the feature function that the CRF learns. While training, given input sequences and label sequences $D = \left[(X_1,  Y_1), (X_2 , Y_2) , ... , (X_N, Y_N)\right]$, by maximum likelihood estimation (**MLE**), we construct the following objective function:
Y
Yi Wang 已提交
116 117


M
Mimee 已提交
118
$$\DeclareMathOperator*{\argmax}{arg\,max} L(\lambda, D) = - \text{log}\left(\prod_{m=1}^{N}p(Y_m|X_m, W)\right) + C \frac{1}{2}\lVert W\rVert^{2}$$
Y
Yi Wang 已提交
119 120


M
Mimee 已提交
121
This objective function can be solved via back-propagation in an end-to-end manner. While decoding, given input sequences $X$, search for sequence $\bar{Y}$ to maximize the conditional probability $\bar{P}(Y|X)$ via decoding methods (such as *Viterbi*, or [Beam Search Algorithm](https://github.com/PaddlePaddle/book/blob/develop/07.machine_translation/README.en.md#Beam%20Search%20Algorithm)).
Y
Yi Wang 已提交
122

M
Mimee 已提交
123
### Deep Bidirectional LSTM (DB-LSTM) SRL model
Y
Yi Wang 已提交
124

M
Mimee 已提交
125
Given predicates and a sentence, SRL tasks aim to identify arguments of the given predicate and their semantic roles. If a sequence has $n$ predicates, we will process this sequence $n$ times. Here is the breakdown of a straight-forward model:
Y
Yi Wang 已提交
126 127

1. Construct inputs;
H
Helin Wang 已提交
128
 - input 1: predicate, input 2: sentence
M
Mimee 已提交
129 130
 - expand input 1 into a sequence of the same length with input 2's sentence, using one-hot representation;
2. Convert the one-hot sequences from step 1 to vector sequences via a word embedding's lookup table;
H
Helin Wang 已提交
131
3. Learn the representation of input sequences by taking vector sequences from step 2 as inputs;
M
Mimee 已提交
132
4. Take the representation from step 3 as input, label sequence as supervisory signal, and realize sequence tagging tasks.
Y
Yi Wang 已提交
133

M
Mimee 已提交
134
Here, we propose some improvements by introducing two simple but effective features:
Y
Yi Wang 已提交
135

M
Mimee 已提交
136
- predicate context (**ctx-p**): A single predicate word may not describe all the predicate information, especially when the same words appear multiple times in a sentence. With the expanded context, the ambiguity can be largely eliminated. Thus, we extract $n$ words before and after predicate to construct a window chunk.
Y
Yi Wang 已提交
137

M
Mimee 已提交
138
- region mark ($m_r$): The binary marker on a word, $m_r$, takes the value of $1$ when the word is in the predicate context region, and $0$ if not.
Y
Yi Wang 已提交
139

M
Mimee 已提交
140
After these modifications, the model is as follows, as illustrated in Figure 6:
Y
Yi Wang 已提交
141 142

1. Construct inputs
M
Mimee 已提交
143 144 145 146 147
 - Input 1: word sequence. Input 2: predicate. Input 3: predicate context, extract $n$ words before and after predicate. Input 4: region mark sequence, where an entry is 1 if word is located in the predicate context region, 0 otherwise.
 - expand input 2~3 into sequences with the same length with input 1
2. Convert input 1~4 to vector sequences via word embedding lookup tables; While input 1 and 3 shares the same lookup table, input 2 and 4 have separate lookup tables.
3. Take the four vector sequences from step 2 as inputs to bidirectional LSTMs; Train the LSTMs to update representations.
4. Take the representation from step 3 as input to CRF, label sequence as supervisory signal, and complete sequence tagging tasks.
Y
Yi Wang 已提交
148 149


150
<div  align="center">  
D
dangqingqing 已提交
151
<img src="image/db_lstm_network_en.png" width = "60%"  align=center /><br>
Y
Yi Wang 已提交
152 153 154
Fig 6. DB-LSTM for SRL tasks
</div>

155
## Data Preparation
Y
Yi Wang 已提交
156

M
Mimee 已提交
157
In the tutorial, we use [CoNLL 2005](http://www.cs.upc.edu/~srlconll/) SRL task open dataset as an example. Note that the training set and development set of the CoNLL 2005 SRL task are not free to download after the competition. Currently, only the test set can be obtained, including 23 sections of the Wall Street Journal and three sections of the Brown corpus. In this tutorial, we use the WSJ corpus as the training dataset to explain the model. However, since the training set is small, for a usable neural network SRL system, please consider paying for the full corpus.
Y
Yi Wang 已提交
158

M
Mimee 已提交
159
The original data includes a variety of information such as POS tagging, naming entity recognition, syntax tree, etc. In this tutorial, we only use the data under `test.wsj/words/` (text sequence) and `test.wsj/props/` (label results). The data directory used in this tutorial is as follows:
Y
Yi Wang 已提交
160 161 162 163 164 165 166 167

```text
conll05st-release/
└── test.wsj
    ├── props  # 标注结果
    └── words  # 输入文本序列
```

M
Mimee 已提交
168
The annotation information is derived from the results of Penn TreeBank\[[7](#references)\] and PropBank \[[8](# references)\]. The labeling of the PropBank is different from the labeling methods mentioned before, but shares with it the same underlying principle. For descriptions of the labeling, please refer to the paper \[[9](#references)\].
Y
Yi Wang 已提交
169

M
Mimee 已提交
170
The raw data needs to be preprocessed into formats that PaddlePaddle can handle. The preprocessing consists of the following steps:
Y
Yi Wang 已提交
171

172 173 174 175 176
1. Merge the text sequence and the tag sequence into the same record;
2. If a sentence contains $n$ predicates, the sentence will be processed $n$ times into $n$ separate training samples, each sample with a different predicate;
3. Extract the predicate context and construct the predicate context region marker;
4. Construct the markings in BIO format;
5. Obtain the integer index corresponding to the word according to the dictionary.
Y
Yi Wang 已提交
177

178 179
```python
# import paddle.v2.dataset.conll05 as conll05
H
Helin Wang 已提交
180 181 182
# conll05.corpus_reader does step 1 and 2 as mentioned above.
# conll05.reader_creator does step 3 to 5.
# conll05.test gets preprocessed training instances.
183
```
Y
Yi Wang 已提交
184

M
Mimee 已提交
185
After preprocessing, a training sample contains nine features, namely: word sequence, predicate, predicate context (5 columns), region mark sequence, label sequence. The following table is an example of a training sample.
Y
Yi Wang 已提交
186

H
Helin Wang 已提交
187
| word sequence | predicate | predicate context(5 columns) | region mark sequence | label sequence|
Y
Yi Wang 已提交
188 189 190 191 192 193 194 195 196 197
|---|---|---|---|---|
| A | set | n't been set . × | 0 | B-A1 |
| record | set | n't been set . × | 0 | I-A1 |
| date | set | n't been set . × | 0 | I-A1 |
| has | set | n't been set . × | 0 | O |
| n't | set | n't been set . × | 1 | B-AM-NEG |
| been | set | n't been set . × | 1 | O |
| set | set | n't been set . × | 1 | B-V |
| . | set | n't been set . × | 1 | O |

H
Helin Wang 已提交
198
In addition to the data, we provide following resources:
Y
Yi Wang 已提交
199

200 201 202 203 204
| filename | explanation |
|---|---|
| word_dict | dictionary of input sentences, total 44068 words |
| label_dict | dictionary of labels, total 106 labels |
| predicate_dict | predicate dictionary, total 3162 predicates |
H
Helin Wang 已提交
205
| emb | a pre-trained word vector lookup table, 32-dimentional |
Y
Yi Wang 已提交
206

207
We trained a language model on the English Wikipedia to get a word vector lookup table used to initialize the SRL model. While training the SRL model, the word vector lookup table is no longer updated. To learn more about the language model and the word vector lookup table, please refer to the tutorial [word vector](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md). There are 995,000,000 tokens in the training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
Y
Yi Wang 已提交
208

M
Mimee 已提交
209
Here we fetch the dictionary, and print its size:
Y
Yi Wang 已提交
210 211

```python
D
dangqingqing 已提交
212 213
import math
import numpy as np
Q
qingqing01 已提交
214
import gzip
215 216
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
217
import paddle.v2.evaluator as evaluator
Y
Yi Wang 已提交
218

219 220
paddle.init(use_gpu=False, trainer_count=1)

221 222 223 224
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
Y
Yi Wang 已提交
225

D
dangqingqing 已提交
226 227 228
print word_dict_len
print label_dict_len
print pred_len
Y
Yi Wang 已提交
229 230
```

M
Mimee 已提交
231
## Model Configuration
Y
Yi Wang 已提交
232

D
dangqingqing 已提交
233
- Define input data dimensions and model hyperparameters.
Y
Yi Wang 已提交
234

D
dangqingqing 已提交
235
```python
M
Mimee 已提交
236
mark_dict_len = 2    # value range of region mark. Region mark is either 0 or 1, so range is 2
D
dangqingqing 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
word_dim = 32        # word vector dimension
mark_dim = 5         # adjacent dimension
hidden_dim = 512     # the dimension of LSTM hidden layer vector is 128 (512/4)
depth = 8            # depth of stacked LSTM

# There are 9 features per sample, so we will define 9 data layers.
# They type for each layer is integer_value_sequence.
def d_type(value_range):
    return paddle.data_type.integer_value_sequence(value_range)

# word sequence
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
# predicate
250
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
D
dangqingqing 已提交
251 252

# 5 features for predicate context
253
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
D
dangqingqing 已提交
254 255 256 257 258 259 260 261 262 263 264
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))

# region marker sequence
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

# label sequence
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
```
265

M
Mimee 已提交
266
Note that `hidden_dim = 512` means a LSTM hidden vector of 128 dimension (512/4). Please refer to PaddlePaddle's official documentation for detail: [lstmemory](http://www.paddlepaddle.org/doc/ui/api/trainer_config_helpers/layers.html#lstmemory)
D
dangqingqing 已提交
267

M
Mimee 已提交
268
- Transform the word sequence itself, the predicate, the predicate context, and the region mark sequence into embedded vector sequences.
D
dangqingqing 已提交
269

270
```python  
D
dangqingqing 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

# Since word vectorlookup table is pre-trained, we won't update it this time.
# is_static being True prevents updating the lookup table during training.
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
# hyperparameter configurations
default_std = 1 / math.sqrt(hidden_dim) / 3.0
std_default = paddle.attr.Param(initial_std=default_std)
std_0 = paddle.attr.Param(initial_std=0.)

predicate_embedding = paddle.layer.embedding(
    size=word_dim,
    input=predicate,
    param_attr=paddle.attr.Param(
        name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
    size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    paddle.layer.embedding(
        size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
```
296

M
Mimee 已提交
297
- 8 LSTM units are trained through alternating left-to-right / right-to-left order denoted by the variable `reverse`.
298

D
dangqingqing 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
```python  
hidden_0 = paddle.layer.mixed(
    size=hidden_dim,
    bias_attr=std_default,
    input=[
        paddle.layer.full_matrix_projection(
            input=emb, param_attr=std_default) for emb in emb_layers
    ])

mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
    initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
    input=hidden_0,
    act=paddle.activation.Relu(),
    gate_act=paddle.activation.Sigmoid(),
    state_act=paddle.activation.Sigmoid(),
    bias_attr=std_0,
    param_attr=lstm_para_attr)

# stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):
    mix_hidden = paddle.layer.mixed(
326 327 328 329
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
D
dangqingqing 已提交
330 331 332
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
333 334
        ])

D
dangqingqing 已提交
335 336
    lstm = paddle.layer.lstmemory(
        input=mix_hidden,
337 338 339
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
D
dangqingqing 已提交
340
        reverse=((i % 2) == 1),
341 342 343
        bias_attr=std_0,
        param_attr=lstm_para_attr)

D
dangqingqing 已提交
344 345 346
    input_tmp = [mix_hidden, lstm]
```

C
caoying03 已提交
347
- In PaddlePaddle, state features and transition features of a CRF are implemented by a fully connected layer and a CRF layer seperately. The fully connected layer with linear activation learns the state features, here we use paddle.layer.mixed (paddle.layer.fc can be uesed as well), and the CRF layer in PaddlePaddle: paddle.layer.crf only learns the transition features, which is a cost layer and is the last layer of the network. paddle.layer.crf outputs the log probability of true tag sequence as the cost by given the input sequence and it requires the true tag sequence as target in the learning process.
D
dangqingqing 已提交
348 349

```python
C
caoying03 已提交
350 351

# The output of the top LSTM unit and its input are feed into a fully connected layer,
C
caoying03 已提交
352
# size of which equals to size of tag labels.
C
caoying03 已提交
353
# The fully connected layer learns the state features
C
caoying03 已提交
354 355 356 357 358 359 360 361 362 363

feature_out = paddle.layer.mixed(
    size=label_dict_len,
    bias_attr=std_default,
    input=[
        paddle.layer.full_matrix_projection(
            input=input_tmp[0], param_attr=hidden_para_attr),
        paddle.layer.full_matrix_projection(
            input=input_tmp[1], param_attr=lstm_para_attr)], )

D
dangqingqing 已提交
364
crf_cost = paddle.layer.crf(
365
    size=label_dict_len,
D
dangqingqing 已提交
366 367 368 369 370 371 372 373
    input=feature_out,
    label=target,
    param_attr=paddle.attr.Param(
        name='crfw',
        initial_std=default_std,
        learning_rate=mix_hidden_lr))
```

C
caoying03 已提交
374
- The CRF decoding layer is used for evaluation and inference. It shares weights with CRF layer.  The sharing of parameters among multiple layers is specified by using the same parameter name in these layers. If true tag sequence is provided in training process, `paddle.layer.crf_decoding` calculates labelling error for each input token and `evaluator.sum` sum the error over the entire sequence. Otherwise, `paddle.layer.crf_decoding`  generates the labelling tags.
D
dangqingqing 已提交
375 376 377 378 379 380 381

```python
crf_dec = paddle.layer.crf_decoding(
   size=label_dict_len,
   input=feature_out,
   label=target,
   param_attr=paddle.attr.Param(name='crfw'))
382
evaluator.sum(input=crf_dec)
D
dangqingqing 已提交
383
```
384 385 386 387 388

## Train model

### Create Parameters

H
Helin Wang 已提交
389
All necessary parameters will be traced created given output layers that we need to use.
390 391

```python
Q
qingqing01 已提交
392
parameters = paddle.parameters.create(crf_cost)
393
```
Y
Yi Wang 已提交
394

395
We can print out parameter name. It will be generated if not specified.
396

397 398
```python
print parameters.keys()
Y
Yi Wang 已提交
399 400
```

M
Mimee 已提交
401
Now we load the pre-trained word lookup tables from word embeddings trained on the English language Wikipedia.
Y
Yi Wang 已提交
402

403 404 405
```python
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
D
dangqingqing 已提交
406 407
        f.read(16)
        return np.fromfile(f, dtype=np.float32).reshape(h, w)
408 409 410 411 412
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
```

### Create Trainer

M
Mimee 已提交
413
We will create trainer given model topology, parameters, and optimization method. We will use the most basic **SGD** method, which is a momentum optimizer with 0 momentum. Meanwhile, we will set learning rate and regularization.
414 415 416 417

```python
optimizer = paddle.optimizer.Momentum(
    momentum=0,
418
    learning_rate=1e-3,
419 420 421 422 423 424
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(
        average_window=0.5, max_average_window=10000), )

trainer = paddle.trainer.SGD(cost=crf_cost,
                             parameters=parameters,
425 426
                             update_equation=optimizer,
                             extra_layers=crf_dec)
Y
Yi Wang 已提交
427 428
```

429 430
### Trainer

M
Mimee 已提交
431
As mentioned in data preparation section, we will use CoNLL 2005 test corpus as the training data set. `conll05.test()` outputs one training instance at a time. It is shuffled and batched into mini batches, and used as input.
Y
Yi Wang 已提交
432

433
```python
D
dangqingqing 已提交
434
reader = paddle.batch(
435
    paddle.reader.shuffle(
436
        conll05.test(), buf_size=8192), batch_size=2)
437
```
Y
Yi Wang 已提交
438

M
Mimee 已提交
439
`feeding` is used to specify the correspondence between data instance and data layer. For example, according to following `feeding`, the 0th column of data instance produced by`conll05.test()` is matched to the data layer named `word_data`.
Y
Yi Wang 已提交
440 441

```python
D
dangqingqing 已提交
442
feeding = {
443 444 445 446 447 448 449 450 451 452
    'word_data': 0,
    'ctx_n2_data': 1,
    'ctx_n1_data': 2,
    'ctx_0_data': 3,
    'ctx_p1_data': 4,
    'ctx_p2_data': 5,
    'verb_data': 6,
    'mark_data': 7,
    'target': 8
}
Y
Yi Wang 已提交
453 454
```

M
Mimee 已提交
455
`event_handler` can be used as callback for training events, it will be used as an argument for the `train` method. Following `event_handler` prints cost during training.
456 457 458 459

```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
460
        if event.batch_id and event.batch_id % 10 == 0:
461 462
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
463
        if event.batch_id % 400 == 0:
464 465 466 467 468 469
            result = trainer.test(reader=reader, feeding=feeding)
            print "\nTest with Pass %d, Batch %d, %s" % (event.pass_id, event.batch_id, result.metrics)

    if isinstance(event, paddle.event.EndPass):
        # save parameters
        with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
470
            parameters.to_tar(f)
471 472 473

        result = trainer.test(reader=reader, feeding=feeding)
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
Y
Yi Wang 已提交
474 475
```

476
`trainer.train` will train the model.
Y
Yi Wang 已提交
477

478 479 480 481 482
```python
trainer.train(
    reader=reader,
    event_handler=event_handler,
    num_passes=10000,
D
dangqingqing 已提交
483
    feeding=feeding)
Y
Yi Wang 已提交
484 485
```

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
### Application

Aftern training is done, we need to select an optimal model based one performance index to do inference. In this task, one can simply select the model with the least number of marks on the test set. The `paddle.layer.crf_decoding` layer is used in the inference, but its inputs does not include the ground truth label.

```python
predict = paddle.layer.crf_decoding(
    size=label_dict_len,
    input=feature_out,
    param_attr=paddle.attr.Param(name='crfw'))
```

Here, using one testing sample as an example.

```python
test_creator = paddle.dataset.conll05.test()
test_data = []
for item in test_creator():
    test_data.append(item[0:8])
    if len(test_data) == 1:
        break
```

The inference interface `paddle.infer` returns the index of predicting labels. Then printing the tagging results based dictionary `labels_reverse`.


```python
labs = paddle.infer(
    output_layer=predict, parameters=parameters, input=test_data, field='id')
assert len(labs) == len(test_data[0][0])
labels_reverse={}
for (k,v) in label_dict.items():
    labels_reverse[v]=k
pre_lab = [labels_reverse[i] for i in labs]
print pre_lab
```

Y
Yi Wang 已提交
522 523
## Conclusion

M
Mimee 已提交
524
Semantic Role Labeling is an important intermediate step in a wide range of natural language processing tasks. In this tutorial, we use SRL as an example to illustrate using PaddlePaddle to do sequence tagging tasks. The models proposed are from our published paper\[[10](#Reference)\]. We only use test data for illustration since the training data on the CoNLL 2005 dataset is not completely public. This aims to propose an end-to-end neural network model with fewer dependencies on natural language processing tools but is comparable, or even better than traditional models in terms of performance. Please check out our paper for more information and discussions.
Y
Yi Wang 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538

## Reference
1. Sun W, Sui Z, Wang M, et al. [Chinese semantic role labeling with shallow parsing](http://www.aclweb.org/anthology/D09-1#page=1513)[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3. Association for Computational Linguistics, 2009: 1475-1483.
2. Pascanu R, Gulcehre C, Cho K, et al. [How to construct deep recurrent neural networks](https://arxiv.org/abs/1312.6026)[J]. arXiv preprint arXiv:1312.6026, 2013.
3. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](https://arxiv.org/abs/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
4. Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[J]. arXiv preprint arXiv:1409.0473, 2014.
5. Lafferty J, McCallum A, Pereira F. [Conditional random fields: Probabilistic models for segmenting and labeling sequence data](http://www.jmlr.org/papers/volume15/doppa14a/source/biblio.bib.old)[C]//Proceedings of the eighteenth international conference on machine learning, ICML. 2001, 1: 282-289.
6. 李航. 统计学习方法[J]. 清华大学出版社, 北京, 2012.
7. Marcus M P, Marcinkiewicz M A, Santorini B. [Building a large annotated corpus of English: The Penn Treebank](http://repository.upenn.edu/cgi/viewcontent.cgi?article=1246&context=cis_reports)[J]. Computational linguistics, 1993, 19(2): 313-330.
8. Palmer M, Gildea D, Kingsbury P. [The proposition bank: An annotated corpus of semantic roles](http://www.mitpressjournals.org/doi/pdfplus/10.1162/0891201053630264)[J]. Computational linguistics, 2005, 31(1): 71-106.
9. Carreras X, Màrquez L. [Introduction to the CoNLL-2005 shared task: Semantic role labeling](http://www.cs.upc.edu/~srlconll/st05/papers/intro.pdf)[C]//Proceedings of the Ninth Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005: 152-164.
10. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
539
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.