提交 665496e0 编写于 作者: Q qingqing01

update doc

上级 3c40e623
...@@ -211,6 +211,7 @@ Here we fetch the dictionary, and print its size: ...@@ -211,6 +211,7 @@ Here we fetch the dictionary, and print its size:
```python ```python
import math import math
import numpy as np import numpy as np
import gzip
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05 import paddle.v2.dataset.conll05 as conll05
...@@ -387,7 +388,7 @@ evaluator.sum(input=crf_dec) ...@@ -387,7 +388,7 @@ evaluator.sum(input=crf_dec)
All necessary parameters will be traced created given output layers that we need to use. All necessary parameters will be traced created given output layers that we need to use.
```python ```python
parameters = paddle.parameters.create([crf_cost, crf_dec]) parameters = paddle.parameters.create(crf_cost)
``` ```
We can print out parameter name. It will be generated if not specified. We can print out parameter name. It will be generated if not specified.
......
...@@ -347,7 +347,7 @@ crf_cost = paddle.layer.crf( ...@@ -347,7 +347,7 @@ crf_cost = paddle.layer.crf(
learning_rate=mix_hidden_lr)) learning_rate=mix_hidden_lr))
``` ```
- CRF译码层和CRF层参数名字相同,即共享权重。如果输入了正确的数据标签(target),会统计错误标签的个数,可以用来评估模型。如果没有输入正确的数据标签,该层可以推到出最优解,可以用来预测模型。在训练中,`evaluator.sum`对CRF译码层统计结果进行求和并得到平均标记错误率。 - CRF译码层和CRF层参数名字相同,即共享权重。如果输入了正确的数据标签(target),会统计错误标签的个数,可以用来评估模型。如果没有输入正确的数据标签,该层可以推到出最优解,可以用来预测模型。
```python ```python
crf_dec = paddle.layer.crf_decoding( crf_dec = paddle.layer.crf_decoding(
......
...@@ -253,6 +253,7 @@ Here we fetch the dictionary, and print its size: ...@@ -253,6 +253,7 @@ Here we fetch the dictionary, and print its size:
```python ```python
import math import math
import numpy as np import numpy as np
import gzip
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05 import paddle.v2.dataset.conll05 as conll05
...@@ -429,7 +430,7 @@ evaluator.sum(input=crf_dec) ...@@ -429,7 +430,7 @@ evaluator.sum(input=crf_dec)
All necessary parameters will be traced created given output layers that we need to use. All necessary parameters will be traced created given output layers that we need to use.
```python ```python
parameters = paddle.parameters.create([crf_cost, crf_dec]) parameters = paddle.parameters.create(crf_cost)
``` ```
We can print out parameter name. It will be generated if not specified. We can print out parameter name. It will be generated if not specified.
......
...@@ -389,7 +389,7 @@ crf_cost = paddle.layer.crf( ...@@ -389,7 +389,7 @@ crf_cost = paddle.layer.crf(
learning_rate=mix_hidden_lr)) learning_rate=mix_hidden_lr))
``` ```
- CRF译码层和CRF层参数名字相同,即共享权重。如果输入了正确的数据标签(target),会统计错误标签的个数,可以用来评估模型。如果没有输入正确的数据标签,该层可以推到出最优解,可以用来预测模型。在训练中,`evaluator.sum`对CRF译码层统计结果进行求和并得到平均标记错误率。 - CRF译码层和CRF层参数名字相同,即共享权重。如果输入了正确的数据标签(target),会统计错误标签的个数,可以用来评估模型。如果没有输入正确的数据标签,该层可以推到出最优解,可以用来预测模型。
```python ```python
crf_dec = paddle.layer.crf_decoding( crf_dec = paddle.layer.crf_decoding(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册