README.md 11.1 KB
Newer Older
Z
zhouxiao-coder 已提交
1
# 线性回归
2
让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。
Z
zhouxiao-coder 已提交
3 4

## 背景介绍
5
给定一个大小为$n$的数据集  ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是$d$个属性上的取值,$y_i$是待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即
Z
zhouxiao-coder 已提交
6 7 8 9 10

$$y_i = \omega_1x_{i1} + \omega_2x_{i2} + \ldots + \omega_dx_{id} + b,  i=1,\ldots,n$$

例如,在我们将要建模的房价预测问题里,$x_{ij}$是描述房子$i$的各种属性(比如房间的个数、周围学校和医院的个数、交通状况等),而 $y_i$是房屋的价格。

11
初看起来,这个假设实在过于简单了,变量间的真实关系很难是线性的。但由于线性回归模型有形式简单和易于建模分析的优点,它在实际问题中得到了大量的应用。很多经典的统计学习、机器学习书籍\[[2,3,4](#参考文献)\]也选择对线性模型独立成章重点讲解。
Z
zhouxiao-coder 已提交
12 13

## 效果展示
Z
zhouxiao-coder 已提交
14
我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,横轴展示了该类房屋价格的中位数,纵轴为模型的预测结果,当二者值完全相等的时候就会落在虚线上。所以模型预测得越准确,则点离虚线越近。
Z
zhouxiao-coder 已提交
15 16 17 18 19 20 21 22 23 24
<p align="center">
	<img src = "image/predictions.png"><br/>
	图1. 预测值 V.S. 真实值
</p>

## 模型概览
在波士顿房价数据集中,和房屋相关的值共有14个:前13个用来描述房屋相关的各种信息,即模型中的 $x_i$;最后一个值为我们要预测的房屋价格的中位数,即模型中的 $y_i$。因此,我们的模型就可以表示成:

$$\hat{Y} = \omega_1X_{1} + \omega_2X_{2} + \ldots + \omega_{13}X_{13} + b$$

Z
zhouxiao-coder 已提交
25
$\hat{Y}$ 表示模型的预测结果,用来和真实值$Y$区分。模型要学习的参数即:$\omega_1, \ldots, \omega_{13}, b$。
Z
zhouxiao-coder 已提交
26

27
建立模型后,我们需要给模型一个优化目标,使得学到的参数能够让预测值$\hat{Y}$尽可能地接近真实值$Y$。这里我们引入损失函数([Loss Function](https://en.wikipedia.org/wiki/Loss_function),或Cost Function)这个概念。 输入任意一个数据样本的目标值$y_{i}$和模型给出的预测值$\hat{y_{i}}$,损失函数输出一个非负的实值。这个实质通常用来反映模型误差的大小。
Z
zhouxiao-coder 已提交
28

29
对于线性回归模型来讲,最常见的损失函数就是均方误差(Mean Squared Error, [MSE](https://en.wikipedia.org/wiki/Mean_squared_error))了,它的形式是:
Z
zhouxiao-coder 已提交
30

31
$$MSE=\frac{1}{n}\sum_{i=1}^{n}{(\hat{Y_i}-Y_i)}^2$$
Z
zhouxiao-coder 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

即对于一个大小为$n$的测试集,$MSE$是$n$个数据预测结果误差平方的均值。

## 数据准备
执行以下命令来准备数据:
```bash
cd data && python prepare_data.py
```
这段代码将从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)下载数据并进行[预处理](#数据预处理),最后数据将被分为训练集和测试集。

这份数据集共506行,每行包含了波士顿郊区的一类房屋的相关信息及价格的中位数。其各维属性的意义如下:

| 属性名 | 解释 | 类型 |
| ------| ------ | ------ |
| CRIM | 该镇的人均犯罪率 | 连续值 |
| ZN | 占地面积超过25,000平方呎的住宅用地比例 | 连续值 |
| INDUS | 非零售商业用地比例 | 连续值 |
Z
zhouxiao-coder 已提交
49
| CHAS | 是否邻近 Charles River  | 离散值,1=邻近;0=不邻近 |
Z
zhouxiao-coder 已提交
50 51 52 53 54 55 56
| NOX | 一氧化氮浓度 | 连续值 |
| RM | 每栋房屋的平均客房数 | 连续值 |
| AGE | 1940年之前建成的自用单位比例 | 连续值 |
| DIS | 到波士顿5个就业中心的加权距离 | 连续值 |
| RAD | 到径向公路的可达性指数 | 连续值 |
| TAX | 全值财产税率 | 连续值 |
| PTRATIO | 学生与教师的比例 | 连续值 |
57
| B | 1000(BK - 0.63)^2,其中BK为黑人占比 | 连续值 |
Z
zhouxiao-coder 已提交
58 59 60 61 62
| LSTAT | 低收入人群占比 | 连续值 |
| MEDV | 房屋价格的中位数 | 连续值 |

### 数据预处理
#### 连续值与离散值
63
观察一下数据,我们的第一个发现是:所有的13维属性中,有12维的连续值和1维的离散值(CHAS)。离散值虽然也常使用类似0、1、2这样的数字表示,但是其含义与连续值是不同的,因为这里的差值没有实际意义。例如,我们用0、1、2来分别表示红色、绿色和蓝色的话,我们并不能因此说“蓝色和红色”比“绿色和红色”的距离更远。所以通常对一个有$d$个可能取值的离散属性,我们会将它们转为$d$个取值为0或1的二值属性。不过就这里而言,因为CHAS本身就是一个二值属性,就省去了这个麻烦。
Z
zhouxiao-coder 已提交
64 65

#### 属性的归一化
66
另外一个稍加观察即可发现的事实是,各维属性的取值范围差别很大(如图2所示)。例如,属性B的取值范围是[0.32, 396.90],而属性NOX的取值范围是[0.3850, 0.8170]。这里就要用到一个常见的操作-归一化(normalization)了。归一化的目标是把各位属性的取值范围放缩到差不多的区间,例如[-0.5,0.5]。这里我们使用一种很常见的操作方法:减掉均值,然后除以原取值范围。
Z
zhouxiao-coder 已提交
67

68
做归一化(或 [Feature scaling](https://en.wikipedia.org/wiki/Feature_scaling))至少有以下3个理由:
Z
zhouxiao-coder 已提交
69 70
- 过大或过小的数值范围会导致计算时的浮点上溢或下溢。
- 不同的数值范围会导致不同属性对模型的重要性不同(至少在训练的初始阶段如此),而这个隐含的假设常常是不合理的。这会对优化的过程造成困难,使训练时间大大的加长。
71
- 很多的机器学习技巧/模型(例如L1,L2正则项,向量空间模型-Vector Space Model)都基于这样的假设:所有的属性取值都差不多是以0为均值且取值范围相近的。
Z
zhouxiao-coder 已提交
72 73 74 75 76 77 78

<p align="center">
	<img src = "image/ranges.png"><br/>
	图2. 各维属性的取值范围
</p>

#### 整理训练集与测试集
79 80 81
我们将数据集分割为两份:一份用于调整模型的参数,即进行模型的训练,模型在这份数据集上的误差被称为**训练误差**;另外一份被用来测试,模型在这份数据集上的误差被称为**测试误差**。我们训练模型的目的是为了通过从训练数据中找到规律来预测未知的新数据,所以测试误差是更能反映模型表现的指标。分割数据的比例要考虑到两个因素:更多的训练数据会降低参数估计的方差,从而得到更可信的模型;而更多的测试数据会降低测试误差的方差,从而得到更可信的测试误差。一种常见的分割比例为$8:2$,感兴趣的读者朋友们也可以尝试不同的设置来观察这两种误差的变化。

执行如下命令可以分割数据集,并将训练集和测试集的地址分别写入train.list 和 test.list两个文件中,供PaddlePaddle读取。
Z
zhouxiao-coder 已提交
82 83 84 85
```python
python prepare_data.py -r 0.8 #默认使用8:2的比例进行分割
```

86
在更复杂的模型训练过程中,我们往往还会多使用一种数据集:验证集。因为复杂的模型中常常还有一些超参数([Hyperparameter](https://en.wikipedia.org/wiki/Hyperparameter_optimization))需要调节,所以我们会尝试多种超参数的组合来分别训练多个模型,然后对比它们在验证集上的表现选择相对最好的一组超参数,最后才使用这组参数下训练的模型在测试集上评估测试误差。由于本章训练的模型比较简单,我们暂且忽略掉这个过程。
Z
zhouxiao-coder 已提交
87 88

### 提供数据给PaddlePaddle
Z
zhouxiao-coder 已提交
89
准备好数据之后,我们使用一个Python data provider来为PaddlePaddle的训练过程提供数据。一个 data provider 就是一个Python函数,它会被PaddlePaddle的训练过程调用。在这个例子里,只需要读取已经保存好的数据,然后一行一行地返回给PaddlePaddle的训练进程即可。
Z
zhouxiao-coder 已提交
90 91 92 93

```python
from paddle.trainer.PyDataProvider2 import *
import numpy as np
Z
zhouxiao-coder 已提交
94
#定义数据的类型和维度
Z
zhouxiao-coder 已提交
95 96 97 98 99 100 101 102 103 104
@provider(input_types=[dense_vector(13), dense_vector(1)])
def process(settings, input_file):
    data = np.load(input_file.strip())
    for row in data:
	    yield row[:-1].tolist(), row[-1:].tolist()

```

## 模型配置说明

105
### 数据定义
Z
zhouxiao-coder 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119
首先,通过 `define_py_data_sources2` 来配置PaddlePaddle从上面的`dataprovider.py`里读入训练数据和测试数据。 PaddlePaddle接受从命令行读入的配置信息,例如这里我们传入一个名为`is_predict`的变量来控制模型在训练和测试时的不同结构。
```python
from paddle.trainer_config_helpers import *

is_predict = get_config_arg('is_predict', bool, False)

define_py_data_sources2(
    train_list='data/train.list',
    test_list='data/test.list',
    module='dataprovider',
    obj='process')

```

120 121
### 算法配置
接着,指定模型优化算法的细节。由于线性回归模型比较简单,我们只要设置基本的`batch_size`即可,它指定每次更新参数的时候使用多少条数据计算梯度信息。
Z
zhouxiao-coder 已提交
122 123 124 125
```python
settings(batch_size=2)
```

126 127
### 网络结构
最后,使用`fc_layer``LinearActivation`来表示线性回归的模型本身。
Z
zhouxiao-coder 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
```python
#输入数据,13维的房屋信息
x = data_layer(name='x', size=13)

y_predict = fc_layer(
    input=x,
    param_attr=ParamAttr(name='w'),
    size=1,
    act=LinearActivation(),
    bias_attr=ParamAttr(name='b'))

if not is_predict: #训练时,我们使用MSE,即regression_cost作为损失函数
    y = data_layer(name='y', size=1)
    cost = regression_cost(input=y_predict, label=y)
    outputs(cost) #训练时输出MSE来监控损失的变化
else: #测试时,输出预测值
    outputs(y_predict)
```

## 训练模型
在对应代码的根目录下执行PaddlePaddle的命令行训练程序。这里指定模型配置文件为`trainer_config.py`,训练30轮,结果保存在`output`路径下。
```bash
150
./train.sh
Z
zhouxiao-coder 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164
```

## 应用模型
现在来看下如何使用已经训练好的模型进行预测。
```bash
python predict.py
```
这里默认使用`output/pass-00029`中保存的模型进行预测,并将数据中的房价与预测结果进行对比,结果保存在 `predictions.png`中。
如果你想使用别的模型或者其它的数据进行预测,只要传入新的路径即可:
```bash
python predict.py -m output/pass-00020 -t data/housing.test.npy
```

## 总结
165
在这章里,我们借助波士顿房价这一数据集,介绍了线性回归模型的基本概念,以及如何使用PaddlePaddle实现训练和测试的过程。很多的模型和技巧都是从简单的线性回归模型演化而来,因此弄清楚线性模型的原理和局限非常重要。
Z
zhouxiao-coder 已提交
166 167 168 169 170 171


## 参考文献
1. https://en.wikipedia.org/wiki/Linear_regression
2. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning[M]. Springer, Berlin: Springer series in statistics, 2001.
3. Murphy K P. Machine learning: a probabilistic perspective[M]. MIT press, 2012.
172
4. Bishop C M. Pattern recognition[J]. Machine Learning, 2006, 128.