提交 247d66d2 编写于 作者: Z zhouxiao-coder

more revise on writting

上级 02f966b2
......@@ -11,7 +11,7 @@ $$y_i = \omega_1x_{i1} + \omega_2x_{i2} + \ldots + \omega_dx_{id} + b, i=1,\ldo
初看起来,这个假设实在过于简单了,变量间的真实关系很难是线性的。但由于线性回归模型有形式简单和易于建模分析的优点,它在实际问题中得到了大量的应用。很多经典的统计学习、机器学习书籍[2,3,4]也选择对线性模型独立成章重点讲解。
## 效果展示
我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,横轴展示了该类房屋价格的中位数,纵轴为模型的预测结果,当二者值完全相等的时候就会落在虚线上。所以模型预测越准确,则点离虚线越近。
我们使用从[UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing)获得的波士顿房价数据集进行模型的训练和预测。下面的散点图展示了使用模型对部分房屋价格进行的预测。其中,横轴展示了该类房屋价格的中位数,纵轴为模型的预测结果,当二者值完全相等的时候就会落在虚线上。所以模型预测越准确,则点离虚线越近。
<p align="center">
<img src = "image/predictions.png"><br/>
图1. 预测值 V.S. 真实值
......@@ -22,7 +22,7 @@ $$y_i = \omega_1x_{i1} + \omega_2x_{i2} + \ldots + \omega_dx_{id} + b, i=1,\ldo
$$\hat{Y} = \omega_1X_{1} + \omega_2X_{2} + \ldots + \omega_{13}X_{13} + b$$
$\hat{Y}$ 表示模型的预测,用来和真实值$Y$区分。模型要学习的参数即:$\omega_1, \ldots, \omega_{13}, b$。
$\hat{Y}$ 表示模型的预测结果,用来和真实值$Y$区分。模型要学习的参数即:$\omega_1, \ldots, \omega_{13}, b$。
建立模型后,我们需要给模型一个优化目标,使得学到的参数能够让预测值$\hat{Y}$尽可能地接近真实值$Y$。这里我们引入损失函数(Loss Function,或Cost Function [5])这个概念。 输入任意一个数据样本的目标值$y_{i}$和模型给出的预测值$\hat{y_{i}}$,损失函数输出一个非负的实值。这个实质通常用来反映模型误差的大小。
......@@ -87,11 +87,9 @@ python prepare_data.py -r 0.8 #默认使用8:2的比例进行分割
准备好数据之后,我们使用一个Python data provider来为PaddlePaddle的训练过程提供数据。一个 data provider 就是一个Python函数,它会被PaddlePaddle的训练过程调用。在这个例子里,只需要读取已经保存好的数据,然后一行一行的返回给PaddlePaddle的训练进程即可。
```python
#dataprovider.py
from paddle.trainer.PyDataProvider2 import *
import numpy as np
# define data types of input
#定义数据的类型和维度
@provider(input_types=[dense_vector(13), dense_vector(1)])
def process(settings, input_file):
data = np.load(input_file.strip())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册