index.html 26.7 KB
Newer Older
1

Y
Yu Yang 已提交
2 3 4 5
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
Y
Yu Yang 已提交
6
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
Y
Yu Yang 已提交
7 8
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yu Yang 已提交
11 12 13 14
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
Y
Yi Wang 已提交
15 16
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yu Yang 已提交
18 19
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
Y
Yi Wang 已提交
20
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
Y
Yu Yang 已提交
21
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
Y
Yu Yang 已提交
22
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yu Yang 已提交
24 25
</head>
<style type="text/css" >
Y
Yu Yang 已提交
26 27 28 29 30 31
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
Y
Yu Yang 已提交
32 33 34 35
}
</style>


Y
Yu Yang 已提交
36
<body>
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yu Yang 已提交
39 40 41 42
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
C
choijulie 已提交
43
# Word2Vec
44

45
This is intended as a reference tutorial. The source code of this tutorial is located at [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec).
Y
Yu Yang 已提交
46

L
Luo Tao 已提交
47
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
Y
Yu Yang 已提交
48

C
choijulie 已提交
49
## Background Introduction
Y
Yu Yang 已提交
50

51
This section introduces the concept of **word embeddings**, which are vector representations of words. Word embeddings is a popular technique used in natural language processing to support applications such as search engines, advertising systems, and recommendation systems.
Y
Yu Yang 已提交
52

C
choijulie 已提交
53
### One-Hot Vectors
Y
Yu Yang 已提交
54

55
Building these applications requires us to quantify the similarity between two words or paragraphs. This calls for a new representation of all the words to make them more suitable for computation. An obvious way to achieve this is through the vector space model, where every word is represented as an **one-hot vector**.
Y
Yu Yang 已提交
56

C
choijulie 已提交
57
For each word, its vector representation has the corresponding entry in the vector as 1, and all other entries as 0. The lengths of one-hot vectors match the size of the dictionary. Each entry of a vector corresponds to the presence (or absence) of a word in the dictionary.
Y
Yu Yang 已提交
58

59
One-hot vectors are intuitive, yet they have limited usefulness. Take the example of an Internet advertising system: Suppose a customer enters the query "Mother's Day", while an ad bids for the keyword "carnations". Because the one-hot vectors of these two words are perpendicular, the metric distance (either Euclidean or cosine similarity) between them would indicate  little relevance. However, *we* know that these two queries are connected semantically, since people often gift their mothers bundles of carnation flowers on Mother's Day. This discrepancy is due to the low information capacity in each vector. That is, comparing the vector representations of two words does not assess their relevance sufficiently. To calculate their similarity accurately, we need more information, which could be learned from large amounts of data through machine learning methods.
Y
Yu Yang 已提交
60

C
choijulie 已提交
61 62
Like many machine learning models, word embeddings can represent knowledge in various ways. Another model may project an one-hot vector to an embedding vector of lower dimension e.g. $embedding(mother's day) = [0.3, 4.2, -1.5, ...], embedding(carnations) = [0.2, 5.6, -2.3, ...]$. Mapping one-hot vectors onto an embedded vector space has the potential to bring the embedding vectors of similar words (either semantically or usage-wise) closer to each other, so that the cosine similarity between the corresponding vectors for words like "Mother's Day" and "carnations" are no longer zero.

M
Mimee 已提交
63
A word embedding model could be a probabilistic model, a co-occurrence matrix model, or a neural network. Before people started using neural networks to generate word embedding, the traditional method was to calculate a co-occurrence matrix $X$ of words. Here, $X$ is a $|V| \times |V|$ matrix, where $X_{ij}$ represents the co-occurrence times of the $i$th and $j$th words in the vocabulary `V` within all corpus, and $|V|$ is the size of the vocabulary. By performing matrix decomposition on $X$ e.g. Singular Value Decomposition \[[5](#references)\]
Y
Yu Yang 已提交
64

C
choijulie 已提交
65
$$X = USV^T$$
Y
Yu Yang 已提交
66

C
choijulie 已提交
67
the resulting $U$ can be seen as the word embedding of all the words.
Y
Yu Yang 已提交
68

C
choijulie 已提交
69 70 71 72
However, this method suffers from many drawbacks:
1) Since many pairs of words don't co-occur, the co-occurrence matrix is sparse. To achieve good performance of matrix factorization, further treatment on word frequency is needed;
2) The matrix is large, frequently on the order of $10^6*10^6$;
3) We need to manually filter out stop words (like "although", "a", ...), otherwise these frequent words will affect the performance of matrix factorization.
Y
Yu Yang 已提交
73

C
choijulie 已提交
74
The neural network based model does not require storing huge hash tables of statistics on all of the corpus. It obtains the word embedding by learning from semantic information, hence could avoid the aforementioned problems in the traditional method. In this chapter, we will introduce the details of neural network word embedding model and how to train such model in PaddlePaddle.
Y
Yu Yang 已提交
75

C
choijulie 已提交
76
## Results Demonstration
Y
Yu Yang 已提交
77

M
Mimee 已提交
78
In this section, we use the $t-$SNE\[[4](#references)\] data visualization algorithm to draw the word embedding vectors after projecting them onto a two-dimensional space (see figure below). From the figure we can see that the semantically relevant words -- *a*, *the*, and *these* or *big* and *huge* -- are close to each other in the projected space, while irrelevant words -- *say* and *business* or *decision* and *japan* -- are far from each other.
Y
Yu Yang 已提交
79 80

<p align="center">
81
    <img src = "image/2d_similarity.png" width=400><br/>
C
choijulie 已提交
82
    Figure 1. Two dimension projection of word embeddings
Y
Yu Yang 已提交
83 84
</p>

C
choijulie 已提交
85 86 87
### Cosine Similarity

On the other hand, we know that the cosine similarity between two vectors falls between $[-1,1]$. Specifically, the cosine similarity is 1 when the vectors are identical, 0 when the vectors are perpendicular, -1 when the are of opposite directions. That is, the cosine similarity between two vectors scales with their relevance. So we can calculate the cosine similarity of two word embedding vectors to represent their relevance:
Y
Yu Yang 已提交
88

Y
Yu Yang 已提交
89 90
```
please input two words: big huge
C
choijulie 已提交
91
similarity: 0.899180685161
Y
Yu Yang 已提交
92 93 94 95 96

please input two words: from company
similarity: -0.0997506977351
```

97
The above results could be obtained by running `calculate_dis.py`, which loads the words in the dictionary and their corresponding trained word embeddings. For detailed instruction, see section [Model Application](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec#model-application).
C
choijulie 已提交
98

Y
Yu Yang 已提交
99

C
choijulie 已提交
100
## Model Overview
Y
Yu Yang 已提交
101

C
choijulie 已提交
102
In this section, we will introduce three word embedding models: N-gram model, CBOW, and Skip-gram, which all output the frequency of each word given its immediate context.
Y
Yu Yang 已提交
103

104
For N-gram model, we will first introduce the concept of language model, and implement it using PaddlePaddle in section [Training](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec#model-application).
Y
Yu Yang 已提交
105

M
Mimee 已提交
106
The latter two models, which became popular recently, are neural word embedding model developed by Tomas Mikolov at Google \[[3](#references)\]. Despite their apparent simplicity, these models train very well.
Y
Yu Yang 已提交
107

C
choijulie 已提交
108
### Language Model
Y
Yu Yang 已提交
109

C
choijulie 已提交
110 111 112 113 114 115
Before diving into word embedding models, we will first introduce the concept of **language model**. Language models build the joint probability function $P(w_1, ..., w_T)$ of a sentence, where $w_i$ is the i-th word in the sentence. The goal is to give higher probabilities to meaningful sentences, and lower probabilities to meaningless constructions.

In general, models that generate the probability of a sequence can be applied to many fields, like machine translation, speech recognition, information retrieval, part-of-speech tagging, and handwriting recognition. Take information retrieval, for example. If you were to search for "how long is a football bame" (where bame is a medical noun), the search engine would have asked if you had meant "how long is a football game" instead. This is because the probability of "how long is a football bame" is very low according to the language model; in addition, among all of the words easily confused with "bame", "game" would build the most probable sentence.

#### Target Probability
For language model's target probability $P(w_1, ..., w_T)$, if the words in the sentence were to be independent, the joint probability of the whole sentence would be the product of each word's probability:
Y
Yu Yang 已提交
116 117 118

$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t)$$

C
choijulie 已提交
119
However, the frequency of words in a sentence typically relates to the words before them, so canonical language models are constructed using conditional probability in its target probability:
Y
Yu Yang 已提交
120 121 122 123

$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t | w_1, ... , w_{t-1})$$


124
### N-gram neural model
Y
Yu Yang 已提交
125

C
choijulie 已提交
126
In computational linguistics, n-gram is an important method to represent text. An n-gram represents a contiguous sequence of n consecutive items given a text. Based on the desired application scenario, each item could be a letter, a syllable or a word. The N-gram model is also an important method in statistical language modeling. When training language models with n-grams, the first (n-1) words of an n-gram are used to predict the *n*th word.
Y
Yu Yang 已提交
127

M
Mimee 已提交
128
Yoshua Bengio and other scientists describe how to train a word embedding model using neural network in the famous paper of Neural Probabilistic Language Models \[[1](#references)\] published in 2003. The Neural Network Language Model (NNLM) described in the paper learns the language model and word embedding simultaneously through a linear transformation and a non-linear hidden connection. That is, after training on large amounts of corpus, the model learns the word embedding; then, it computes the probability of the whole sentence, using the embedding. This type of language model can overcome the **curse of dimensionality** i.e. model inaccuracy caused by the difference in dimensionality between training and testing data. Note that the term *neural network language model* is ill-defined, so we will not use the name NNLM but only refer to it as *N-gram neural model* in this section.
Y
Yu Yang 已提交
129

C
choijulie 已提交
130
We have previously described language model using conditional probability, where the probability of the *t*-th word in a sentence depends on all $t-1$ words before it. Furthermore, since words further prior have less impact on a word, and every word within an n-gram is only effected by its previous n-1 words, we have:
Y
Yu Yang 已提交
131 132 133

$$P(w_1, ..., w_T) = \prod_{t=n}^TP(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1})$$

C
choijulie 已提交
134
Given some real corpus in which all sentences are meaningful, the n-gram model should maximize the following objective function:
Y
Yu Yang 已提交
135 136 137

$$\frac{1}{T}\sum_t f(w_t, w_{t-1}, ..., w_{t-n+1};\theta) + R(\theta)$$

138
where $f(w_t, w_{t-1}, ..., w_{t-n+1})$ represents the conditional logarithmic probability of the current word $w_t$ given its previous $n-1$ words, and $R(\theta)$ represents parameter regularization term.
Y
Yu Yang 已提交
139

140
<p align="center">
C
choijulie 已提交
141 142
       <img src="image/nnlm_en.png" width=500><br/>
       Figure 2. N-gram neural network model
Y
Yu Yang 已提交
143 144
</p>

145

C
choijulie 已提交
146 147 148
Figure 2 shows the N-gram neural network model. From the bottom up, the model has the following components:

 - For each sample, the model gets input $w_{t-n+1},...w_{t-1}$, and outputs the probability that the t-th word is one of `|V|` in the dictionary.
149

C
choijulie 已提交
150 151 152
 Every input word $w_{t-n+1},...w_{t-1}$ first gets transformed into word embedding $C(w_{t-n+1}),...C(w_{t-1})$ through a transformation matrix.

 - All the word embeddings concatenate into a single vector, which is mapped (nonlinearly) into the $t$-th word hidden representation:
153

154
    $$g=Utanh(\theta^Tx + b_1) + Wx + b_2$$
155

C
choijulie 已提交
156
   where $x$ is the large vector concatenated from all the word embeddings representing the context; $\theta$, $U$, $b_1$, $b_2$ and $W$ are parameters connecting word embedding layers to the hidden layers. $g$ represents the unnormalized probability of the output word, $g_i$ represents the unnormalized probability of the output word being the i-th word in the dictionary.
Y
Yu Yang 已提交
157

C
choijulie 已提交
158
 - Based on the definition of softmax, using normalized $g_i$, the probability that the output word is $w_t$ is represented as:
159

Y
Yu Yang 已提交
160 161
  $$P(w_t | w_1, ..., w_{t-n+1}) = \frac{e^{g_{w_t}}}{\sum_i^{|V|} e^{g_i}}$$

C
choijulie 已提交
162
 - The cost of the entire network is a multi-class cross-entropy and can be described by the following loss function
Y
Yu Yang 已提交
163

164
   $$J(\theta) = -\sum_{i=1}^N\sum_{c=1}^{|V|}y_k^{i}log(softmax(g_k^i))$$
Y
Yu Yang 已提交
165

C
choijulie 已提交
166
   where $y_k^i$ represents the true label for the $k$-th class in the $i$-th sample ($0$ or $1$), $softmax(g_k^i)$ represents the softmax probability for the $k$-th class in the $i$-th sample.
167 168

### Continuous Bag-of-Words model(CBOW)
Y
Yu Yang 已提交
169

C
choijulie 已提交
170
CBOW model predicts the current word based on the N words both before and after it. When $N=2$, the model is as the figure below:
Y
Yu Yang 已提交
171

172
<p align="center">
C
choijulie 已提交
173 174
    <img src="image/cbow_en.png" width=250><br/>
    Figure 3. CBOW model
Y
Yu Yang 已提交
175 176
</p>

C
choijulie 已提交
177
Specifically, by ignoring the order of words in the sequence, CBOW uses the average value of the word embedding of the context to predict the current word:
Y
Yu Yang 已提交
178

C
choijulie 已提交
179
$$\text{context} = \frac{x_{t-1} + x_{t-2} + x_{t+1} + x_{t+2}}{4}$$
Y
Yu Yang 已提交
180

C
choijulie 已提交
181
where $x_t$ is the word embedding of the t-th word, classification score vector is $z=U*\text{context}$, the final classification $y$ uses softmax and the loss function uses multi-class cross-entropy.
Y
Yu Yang 已提交
182

183
### Skip-gram model
Y
Yu Yang 已提交
184

C
choijulie 已提交
185
The advantages of CBOW is that it smooths over the word embeddings of the context and reduces noise, so it is very effective on small dataset. Skip-gram uses a word to predict its context and get multiple context for the given word, so it can be used in larger datasets.
Y
Yu Yang 已提交
186

187
<p align="center">
C
choijulie 已提交
188 189
    <img src="image/skipgram_en.png" width=250><br/>
    Figure 4. Skip-gram model
Y
Yu Yang 已提交
190 191
</p>

C
choijulie 已提交
192
As illustrated in the figure above, skip-gram model maps the word embedding of the given word onto $2n$ word embeddings (including $n$ words before and $n$ words after the given word), and then combine the classification loss of all those $2n$ words by softmax.
Y
Yu Yang 已提交
193

C
choijulie 已提交
194
## Dataset
Y
Yu Yang 已提交
195

M
Mimee 已提交
196
We will use Penn Treebank (PTB) (Tomas Mikolov's pre-processed version) dataset. PTB is a small dataset, used in Recurrent Neural Network Language Modeling Toolkit\[[2](#references)\]. Its statistics are as follows:
Y
Yu Yang 已提交
197 198 199

<p align="center">
<table>
200
    <tr>
C
choijulie 已提交
201 202 203
        <td>training set</td>
        <td>validation set</td>
        <td>test set</td>
204 205 206 207 208 209 210
    </tr>
    <tr>
        <td>ptb.train.txt</td>
        <td>ptb.valid.txt</td>
        <td>ptb.test.txt</td>
    </tr>
    <tr>
C
choijulie 已提交
211 212 213
        <td>42068 lines</td>
        <td>3370 lines</td>
        <td>3761 lines</td>
214
    </tr>
Y
Yu Yang 已提交
215 216 217
</table>
</p>

C
choijulie 已提交
218 219 220 221 222 223
### Python Dataset Module

We encapsulated the PTB Data Set in our Python module `paddle.dataset.imikolov`. This module can

1. download the dataset to `~/.cache/paddle/dataset/imikolov`, if not yet, and
2. [preprocesses](#preprocessing) the dataset.
224

C
choijulie 已提交
225
### Preprocessing
Y
Yu Yang 已提交
226

C
choijulie 已提交
227
We will be training a 5-gram model. Given five words in a window, we will predict the fifth word given the first four words.
Y
Yu Yang 已提交
228

C
choijulie 已提交
229
Beginning and end of a sentence have a special meaning, so we will add begin token `<s>` in the front of the sentence. And end token `<e>` in the end of the sentence. By moving the five word window in the sentence, data instances are generated.
Y
Yu Yang 已提交
230

C
choijulie 已提交
231
For example, the sentence "I have a dream that one day" generates five data instances:
Y
Yu Yang 已提交
232

L
Luo Tao 已提交
233 234 235 236 237 238
```text
<s> I have a dream
I have a dream that
have a dream that one
a dream that one day
dream that one day <e>
Y
Yu Yang 已提交
239 240
```

C
choijulie 已提交
241
At last, each data instance will be converted into an integer sequence according it's words' index inside the dictionary.
Y
Yu Yang 已提交
242

C
choijulie 已提交
243 244 245
## Training

The neural network that we will be using is illustrated in the graph below:
Y
Yu Yang 已提交
246

247
<p align="center">
C
choijulie 已提交
248 249
    <img src="image/ngram.en.png" width=400><br/>
    Figure 5. N-gram neural network model in model configuration
Y
Yu Yang 已提交
250 251
</p>

C
choijulie 已提交
252 253
`word2vec/train.py` demonstrates training word2vec using PaddlePaddle:

254 255
### Datafeeder Configuration
Our program starts with importing necessary packages:
L
Luo Tao 已提交
256

257
- Import packages.
258 259

```python
260 261 262
import paddle
import paddle.fluid as fluid
import numpy
D
daming-lu 已提交
263 264 265 266
from functools import partial
import math
import os
import sys
267
from __future__ import print_function
268 269
```

270
- Configure parameters and build word dictionary.
Y
Update  
Yi Wang 已提交
271

272
```python
273 274 275 276
EMBED_SIZE = 32  # word vector dimension
HIDDEN_SIZE = 256  # hidden layer dimension
N = 5  # train 5-gram
BATCH_SIZE = 32  # batch size
Y
Yu Yang 已提交
277

278 279
# can use CPU or GPU
use_cuda = os.getenv('WITH_GPU', '0') != '0'
L
Luo Tao 已提交
280

281 282
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
L
Luo Tao 已提交
283 284
```

285
Unlike from the previous PaddlePaddle v2, in the new API (Fluid), we do not need to calculate word embedding ourselves. PaddlePaddle provides a built-in method `fluid.layers.embedding` and we can use it directly to build our N-gram neural network model.
L
Luo Tao 已提交
286

287 288
- We define our N-gram neural network structure as below. This structure will be used both in `train` and in `infer`. We can specify `is_sparse = True` to accelerate sparse matrix update for word embedding.

L
Luo Tao 已提交
289
```python
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
def inference_program(is_sparse):
    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    fourth_word = fluid.layers.data(name='fourthw', shape=[1], dtype='int64')

    embed_first = fluid.layers.embedding(
        input=first_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_second = fluid.layers.embedding(
        input=second_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_third = fluid.layers.embedding(
        input=third_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_fourth = fluid.layers.embedding(
        input=fourth_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')

    concat_embed = fluid.layers.concat(
        input=[embed_first, embed_second, embed_third, embed_fourth], axis=1)
    hidden1 = fluid.layers.fc(input=concat_embed,
                              size=HIDDEN_SIZE,
                              act='sigmoid')
    predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
    return predict_word
L
Luo Tao 已提交
328 329
```

330
- As we already defined the N-gram neural network structure in the above, we can use it in our `train` method.
L
Luo Tao 已提交
331 332

```python
333 334 335 336 337 338 339 340 341
def train_program(is_sparse):
    # The declaration of 'next_word' must be after the invoking of inference_program,
    # or the data input order of train program would be [next_word, firstw, secondw,
    # thirdw, fourthw], which is not correct.
    predict_word = inference_program(is_sparse)
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
    cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
    avg_cost = fluid.layers.mean(cost)
    return avg_cost
L
Luo Tao 已提交
342
```
343

344
- Now we will begin the training process. It is relatively simple compared to the previous version.  `paddle.dataset.imikolov.train()` and `paddle.dataset.imikolov.test()` are our training and test set. Both of the functions will return a **reader**: In PaddlePaddle, reader is a python function which returns a Python iterator which output a single data instance at a time.
L
Luo Tao 已提交
345

C
choijulie 已提交
346
`paddle.batch` takes reader as input, outputs a **batched reader**: In PaddlePaddle, a reader outputs a single data instance at a time but batched reader outputs a minibatch of data instances.
L
Luo Tao 已提交
347

348 349
`event_handler` can be passed into `trainer.train` so that we can do some tasks after each step or epoch. These tasks include recording current metrics or terminate current training process.

L
Luo Tao 已提交
350
```python
D
daming-lu 已提交
351 352 353 354 355 356
def optimizer_func():
    return fluid.optimizer.AdagradOptimizer(
        learning_rate=3e-3,
        regularization=fluid.regularizer.L2DecayRegularizer(8e-4))


357 358 359 360 361 362 363 364 365
def train(use_cuda, train_program, params_dirname):
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    def event_handler(event):
Y
yuyang 已提交
366
        if isinstance(event, fluid.contrib.trainer.EndStepEvent):
367 368 369 370 371 372 373
            outs = trainer.test(
                reader=test_reader,
                feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])
            avg_cost = outs[0]

            # We output cost every 10 steps.
            if event.step % 10 == 0:
J
JiabinYang 已提交
374
                print("Step %d: Average Cost %f" % (event.step, avg_cost))
375

376 377 378
            # If average cost is lower than 5.8, we consider the model good enough to stop.
            # Note 5.8 is a relatively high value. In order to get a better model, one should
            # aim for avg_cost lower than 3.5. But the training could take longer time.
D
daming-lu 已提交
379
            if avg_cost < 5.8:
380 381 382 383 384 385
                trainer.save_params(params_dirname)
                trainer.stop()

            if math.isnan(avg_cost):
                sys.exit("got NaN loss, training failed.")

Y
yuyang 已提交
386
    trainer = fluid.contrib.trainer.Trainer(
387 388 389 390 391
        train_func=train_program,
        # Note here we need to choose more sophisticated optimizer
        # such as AdaGrad with a decay rate. The normal SGD converges
        # very slowly.
        # optimizer=fluid.optimizer.SGD(learning_rate=0.001),
D
daming-lu 已提交
392
        optimizer_func=optimizer_func,
393 394 395 396 397 398 399
        place=place)

    trainer.train(
        reader=train_reader,
        num_epochs=1,
        event_handler=event_handler,
        feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])
Y
Yu Yang 已提交
400 401
```

C
choijulie 已提交
402
`trainer.train` will start training, the output of `event_handler` will be similar to following:
403
```text
404 405 406
Step 0: Average Cost 7.337213
Step 10: Average Cost 6.136128
Step 20: Average Cost 5.766995
407 408
...
```
409

Y
Yu Yang 已提交
410

C
choijulie 已提交
411
## Model Application
Y
Update  
Yi Wang 已提交
412

413
After the model is trained, we can load the saved model parameters and do some inference.
Y
Yu Yang 已提交
414

415
### Predicting the next word
Y
Yu Yang 已提交
416

417
We can use our trained model to predict the next word given its previous N-gram. For example
Y
Yu Yang 已提交
418 419


420 421 422
```python
def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
yuyang 已提交
423
    inferencer = fluid.contrib.inferencer.Inferencer(
424 425 426 427 428 429 430 431 432
        infer_func=inference_program, param_path=params_dirname, place=place)

    # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
    # is simply an index to look up for the corresponding word vector and hence
    # the shape of word (base_shape) should be [1]. The length-based level of
    # detail (lod) info of each LoDtensor should be [[1]] meaning there is only
    # one lod_level and there is only one sequence of one word on this level.
    # Note that lod info should be a list of lists.

433 434 435 436 437 438 439 440 441 442
    data1 = [[211]]  # 'among'
    data2 = [[6]]    # 'a'
    data3 = [[96]]   # 'group'
    data4 = [[4]]    # 'of'
    lod = [[1]]

    first_word  = fluid.create_lod_tensor(data1, lod, place)
    second_word = fluid.create_lod_tensor(data2, lod, place)
    third_word  = fluid.create_lod_tensor(data3, lod, place)
    fourth_word = fluid.create_lod_tensor(data4, lod, place)
443 444 445 446 447 448 449 450 451 452 453 454 455

    result = inferencer.infer(
        {
            'firstw': first_word,
            'secondw': second_word,
            'thirdw': third_word,
            'fourthw': fourth_word
        },
        return_numpy=False)

    print(numpy.array(result[0]))
    most_possible_word_index = numpy.argmax(result[0])
    print(most_possible_word_index)
456 457 458 459
    print([
        key for key, value in word_dict.iteritems()
        if value == most_possible_word_index
    ][0])
Y
Yu Yang 已提交
460 461
```

462
When we spent 3 mins in training, the output is like below, which means the next word for `among a group of` is `a`. If we train the model with a longer time, it will give a meaningful prediction as `workers`.
463

464
```text
465 466 467
[[0.00106646 0.0007907  0.00072041 ... 0.00049024 0.00041355 0.00084464]]
6
a
468
```
469

470
The main entrance of the program is fairly simple:
Y
Yu Yang 已提交
471

472
```python
473 474 475
def main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yu Yang 已提交
476

477
    params_dirname = "word2vec.inference.model"
Y
Yu Yang 已提交
478

479 480 481 482
    train(
        use_cuda=use_cuda,
        train_program=partial(train_program, is_sparse),
        params_dirname=params_dirname)
Y
Yu Yang 已提交
483

484 485 486 487
    infer(
        use_cuda=use_cuda,
        inference_program=partial(inference_program, is_sparse),
        params_dirname=params_dirname)
Y
Yu Yang 已提交
488

489

490
main(use_cuda=use_cuda, is_sparse=True)
491
```
Y
Update  
Yi Wang 已提交
492

C
choijulie 已提交
493 494
## Conclusion

495
This chapter introduces word embeddings, the relationship between language model and word embedding, and how to train neural networks to learn word embedding.
C
choijulie 已提交
496

497
In grammar analysis and semantic analysis, a previously trained word embedding can initialize models for better performance. We hope that readers can use word embedding models in their work after reading this chapter.
Y
Yu Yang 已提交
498 499


M
Mimee 已提交
500
## References
Y
Yu Yang 已提交
501 502 503 504 505 506 507
1. Bengio Y, Ducharme R, Vincent P, et al. [A neural probabilistic language model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf)[J]. journal of machine learning research, 2003, 3(Feb): 1137-1155.
2. Mikolov T, Kombrink S, Deoras A, et al. [Rnnlm-recurrent neural network language modeling toolkit](http://www.fit.vutbr.cz/~imikolov/rnnlm/rnnlm-demo.pdf)[C]//Proc. of the 2011 ASRU Workshop. 2011: 196-201.
3. Mikolov T, Chen K, Corrado G, et al. [Efficient estimation of word representations in vector space](https://arxiv.org/pdf/1301.3781.pdf)[J]. arXiv preprint arXiv:1301.3781, 2013.
4. Maaten L, Hinton G. [Visualizing data using t-SNE](https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf)[J]. Journal of Machine Learning Research, 2008, 9(Nov): 2579-2605.
5. https://en.wikipedia.org/wiki/Singular_value_decomposition

<br/>
L
Luo Tao 已提交
508
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
509

Y
Yu Yang 已提交
510 511 512 513 514 515 516
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
Y
Yu Yang 已提交
517 518 519
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
Y
Yu Yang 已提交
520
    code = code.replace(/&amp;/g, "&")
Y
Yu Yang 已提交
521 522
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
523
    code = code.replace(/&nbsp;/g, " ")
Y
Yu Yang 已提交
524
    return hljs.highlightAuto(code, [lang]).value;
Y
Yu Yang 已提交
525 526 527
  }
});
document.getElementById("context").innerHTML = marked(
528
        document.getElementById("markdown").innerHTML)
Y
Yu Yang 已提交
529 530
</script>
</body>