index.en.html 33.2 KB
Newer Older
1

Y
Yi Wang 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yi Wang 已提交
11 12 13 14 15 16
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yi Wang 已提交
18 19 20 21 22
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yi Wang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yi Wang 已提交
39 40 41 42 43 44
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Semantic Role Labeling

45
The source code of this chapter is live on [book/label_semantic_roles](https://github.com/PaddlePaddle/book/tree/develop/06.label_semantic_roles).
Y
Yi Wang 已提交
46

47 48
For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).

Y
Yi Wang 已提交
49 50
## Background

M
Mimee 已提交
51
Natural language analysis techniques consist of lexical, syntactic, and semantic analysis. **Semantic Role Labeling (SRL)** is an instance of **Shallow Semantic Analysis**.
Y
Yi Wang 已提交
52

M
Mimee 已提交
53
In a sentence, a **predicate** states a property or a characterization of a *subject*, such as what it does and what it is like. The predicate represents the core of an event, whereas the words accompanying the predicate are **arguments**. A **semantic role** refers to the abstract role an argument of a predicate take on in the event, including *agent*, *patient*, *theme*, *experiencer*, *beneficiary*, *instrument*, *location*, *goal*, and *source*.
Y
Yi Wang 已提交
54

M
Mimee 已提交
55
In the following example of a Chinese sentence, "to encounter" is the predicate (*pred*); "Ming" is the *agent*; "Hong" is the *patient*; "yesterday" and "evening" are the *time*; finally, "the park" is the *location*.
Y
Yi Wang 已提交
56

M
Mimee 已提交
57
$$\mbox{[小明 Ming]}_{\mbox{Agent}}\mbox{[昨天 yesterday]}_{\mbox{Time}}\mbox{[晚上 evening]}_\mbox{Time}\mbox{在[公园 a park]}_{\mbox{Location}}\mbox{[遇到 to encounter]}_{\mbox{Predicate}}\mbox{了[小红 Hong]}_{\mbox{Patient}}\mbox{。}$$
Y
Yi Wang 已提交
58

M
Mimee 已提交
59
Instead of analyzing the semantic information, **Semantic Role Labeling** (**SRL**) identifies the relation between the predicate and the other constituents surrounding it. The predicate-argument structures are labeled as specific semantic roles. A wide range of natural language understanding tasks, including *information extraction*, *discourse analysis*, and *deepQA*. Research usually assumes a predicate of a sentence to be specified; the only task is to identify its arguments and their semantic roles.
Y
Yi Wang 已提交
60

M
Mimee 已提交
61 62 63 64 65 66 67
Conventional SRL systems mostly build on top of syntactic analysis, usually consisting of five steps:

1. Construct a syntax tree, as shown in Fig. 1
2. Identity the candidate arguments of the given predicate on the tree.
3. Prune the most unlikely candidate arguments.
4. Identify the real arguments, often by a binary classifier.
5. Multi-classify on results from step 4 to label the semantic roles. Steps 2 and 3 usually introduce hand-designed features based on syntactic analysis (step 1).
Y
Yi Wang 已提交
68 69 70


<div  align="center">
71
<img src="image/dependency_parsing_en.png" width = "80%" align=center /><br>
M
Mimee 已提交
72
Fig 1. Syntax tree
Y
Yi Wang 已提交
73 74 75
</div>


M
Mimee 已提交
76
However, a complete syntactic analysis requires identifying the relation among all constituents. Thus, the accuracy of SRL is sensitive to the preciseness of the syntactic analysis, making SRL challenging. To reduce its complexity and obtain some information on the syntactic structures, we often use *shallow syntactic analysis* a.k.a. partial parsing or chunking. Unlike complete syntactic analysis, which requires the construction of the complete parsing tree, *Shallow Syntactic Analysis* only requires identifying some independent constituents with relatively simple structures, such as verb phrases (chunk). To avoid difficulties in constructing a syntax tree with high accuracy, some work\[[1](#Reference)\] proposed semantic chunking-based SRL methods, which reduces SRL into a sequence tagging problem. Sequence tagging tasks classify syntactic chunks using **BIO representation**. For syntactic chunks forming role A, its first chunk receives the B-A tag (Begin) and the remaining ones receive the tag I-A (Inside); in the end, the chunks left out receive the tag O.
Y
Yi Wang 已提交
77 78 79 80

The BIO representation of above example is shown in Fig.1.

<div  align="center">
81
<img src="image/bio_example_en.png" width = "90%"  align=center /><br>
M
Mimee 已提交
82
Fig 2. BIO representation
Y
Yi Wang 已提交
83 84
</div>

M
Mimee 已提交
85 86 87 88 89
This example illustrates the simplicity of sequence tagging, since

1. It only relies on shallow syntactic analysis, reduces the precision requirement of syntactic analysis;
2. Pruning the candidate arguments is no longer necessary;
3. Arguments are identified and tagged at the same time. Simplifying the workflow reduces the risk of accumulating errors; oftentimes, methods that unify multiple steps boost performance.
Y
Yi Wang 已提交
90

M
Mimee 已提交
91
In this tutorial, our SRL system is built as an end-to-end system via a neural network. The system takes only text sequences as input, without using any syntactic parsing results or complex hand-designed features. The public dataset [CoNLL-2004 and CoNLL-2005 Shared Tasks](http://www.cs.upc.edu/~srlconll/) is used for the following task: given a sentence with predicates marked, identify the corresponding arguments and their semantic roles through sequence tagging.
Y
Yi Wang 已提交
92 93 94

## Model

95
**Recurrent Neural Networks** (*RNN*) are important tools for sequence modeling and have been successfully used in some natural language processing tasks. Unlike feed-forward neural networks, RNNs can model the dependencies between elements of sequences. As a variant of RNNs', LSTMs aim model long-term dependency in long sequences. We have introduced this in [understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). In this chapter, we continue to use LSTMs to solve SRL problems.
Y
Yi Wang 已提交
96 97 98

### Stacked Recurrent Neural Network

M
Mimee 已提交
99
*Deep Neural Networks* can extract hierarchical representations. The higher layers can form relatively abstract/complex representations, based on primitive features discovered through the lower layers. Unfolding LSTMs through time results in a deep feed-forward neural network. This is because any computational path between the input at time $k < t$ to the output at time $t$ crosses several nonlinear layers. On the other hand, due to parameter sharing over time, LSTMs are also *shallow*; that is, the computation carried out at each time-step is just a linear transformation. Deep LSTM networks are typically constructed by stacking multiple LSTM layers on top of each other and taking the output from lower LSTM layer at time $t$ as the input of upper LSTM layer at time $t$. Deep, hierarchical neural networks can be efficient at representing some functions and modeling varying-length dependencies\[[2](#Reference)\].
M
Mimee 已提交
100

Y
Yi Wang 已提交
101

M
Mimee 已提交
102
However, in a deep LSTM network, any gradient propagated back in depth needs to traverse a large number of nonlinear steps. As a result, while LSTMs of 4 layers can be trained properly, those with 4-8 have much worse performance. Conventional LSTMs prevent back-propagated errors from vanishing or exploding by introducing shortcut connections to skip the intermediate nonlinear layers. Therefore, deep LSTMs can consider shortcut connections in depth as well.
Y
Yi Wang 已提交
103 104


M
Mimee 已提交
105
A single LSTM cell has three operations:
Y
Yi Wang 已提交
106

M
Mimee 已提交
107 108
1. input-to-hidden: map input $x$ to the input of the forget gates, input gates, memory cells and output gates by linear transformation (i.e., matrix mapping);
2. hidden-to-hidden: calculate forget gates, input gates, output gates and update memory cell, this is the main part of LSTMs;
M
Mimee 已提交
109 110 111
3. hidden-to-output: this part typically involves an activation operation on hidden states.

Based on the stacked LSTMs, we add shortcut connections: take the input-to-hidden from the previous layer as a new input and learn another linear transformation.
Y
Yi Wang 已提交
112

M
Mimee 已提交
113
Fig.3 illustrates the final stacked recurrent neural networks.
Y
Yi Wang 已提交
114

Y
Update  
Yi Wang 已提交
115
<p align="center">  
116
<img src="./image/stacked_lstm_en.png" width = "40%"  align=center><br>
Y
Yi Wang 已提交
117 118 119 120 121
Fig 3. Stacked Recurrent Neural Networks
</p>

### Bidirectional Recurrent Neural Network

M
Mimee 已提交
122
While LSTMs can summarize the history -- all the previous input seen up until now -- they can not see the future. Because most NLP (natural language processing) tasks provide the entirety of sentences, sequential learning can benefit from having the future encoded as well as the history.
Y
Yi Wang 已提交
123

M
Mimee 已提交
124
To address, we can design a bidirectional recurrent neural network by making a minor modification. A higher LSTM layer can process the sequence in reversed direction with regards to its immediate lower LSTM layer, i.e., deep LSTM layers take turns to train on input sequences from left-to-right and right-to-left. Therefore, LSTM layers at time-step $t$ can see both histories and the future, starting from the second layer. Fig. 4 illustrates the bidirectional recurrent neural networks.
Y
Yi Wang 已提交
125 126


Y
Update  
Yi Wang 已提交
127
<p align="center">  
128
<img src="./image/bidirectional_stacked_lstm_en.png" width = "60%" align=center><br>
Y
Yi Wang 已提交
129 130 131
Fig 4. Bidirectional LSTMs
</p>

M
Mimee 已提交
132
Note that, this bidirectional RNNs is different with the one proposed by Bengio et al. in machine translation tasks \[[3](#Reference), [4](#Reference)\]. We will introduce another bidirectional RNNs in the following tasks [machine translation](https://github.com/PaddlePaddle/book/blob/develop/machine_translation/README.en.md)
Y
Yi Wang 已提交
133

M
Mimee 已提交
134
### Conditional Random Field (CRF)
Y
Yi Wang 已提交
135

M
Mimee 已提交
136
Typically, a neural network's lower layers learn representations while its very top layer learns the final task. These principles can guide our problem-solving approaches. In SRL tasks, a **Conditional Random Field** (*CRF*) is built on top of the network in order to perform the final prediction to tag sequences. It takes as input the representations provided by the last LSTM layer.
Y
Yi Wang 已提交
137 138


M
Mimee 已提交
139
The CRF is an undirected probabilistic graph with nodes denoting random variables and edges denoting dependencies between these variables. In essence, CRFs learn the conditional probability $P(Y|X)$, where $X = (x_1, x_2, ... , x_n)$ are sequences of input and $Y = (y_1, y_2, ... , y_n)$ are label sequences; to decode, simply search through $Y$ for a sequence that maximizes the conditional probability $P(Y|X)$, i.e., $Y^* = \mbox{arg max}_{Y} P(Y | X)$。
Y
Yi Wang 已提交
140

M
Mimee 已提交
141
Sequence tagging tasks do not assume a lot of conditional independence, because they are only concerned with the input and the output being linear sequences. Thus, the graph model of sequence tagging tasks is usually a simple chain or line, which results in a **Linear-Chain Conditional Random Field**, shown in Fig.5.
Y
Yi Wang 已提交
142

Y
Update  
Yi Wang 已提交
143
<p align="center">  
Y
Yi Wang 已提交
144 145 146 147
<img src="./image/linear_chain_crf.png" width = "35%" align=center><br>
Fig 5. Linear Chain Conditional Random Field used in SRL tasks
</p>

148
By the fundamental theorem of random fields \[[5](#Reference)\], the joint distribution over the label sequence $Y$ given $X$ has the form:
Y
Yi Wang 已提交
149 150 151 152

$$p(Y | X) = \frac{1}{Z(X)} \text{exp}\left(\sum_{i=1}^{n}\left(\sum_{j}\lambda_{j}t_{j} (y_{i - 1}, y_{i}, X, i) + \sum_{k} \mu_k s_k (y_i, X, i)\right)\right)$$


M
Mimee 已提交
153
where, $Z(X)$ is normalization constant, ${t_j}$ represents the feature functions defined on edges called the *transition feature*, which denotes the transition probabilities from $y_{i-1}$ to $y_i$ given input sequence $X$. ${s_k}$ represents the feature function defined on nodes, called the state feature, denoting the probability of $y_i$ given input sequence $X$. In addition, $\lambda_j$ and $\mu_k$ are weights corresponding to $t_j$ and $s_k$. Alternatively, $t$ and $s$ can be written in the same form that depends on $y_{i - 1}$, $y_i$, $X$, and $i$. Taking its summation over all nodes $i$, we have: $f_{k}(Y, X) = \sum_{i=1}^{n}f_k({y_{i - 1}, y_i, X, i})$, which defines the *feature function* $f$. Thus, $P(Y|X)$ can be written as:
Y
Yi Wang 已提交
154 155 156

$$p(Y|X, W) = \frac{1}{Z(X)}\text{exp}\sum_{k}\omega_{k}f_{k}(Y, X)$$

M
Mimee 已提交
157
where $\omega$ are the weights to the feature function that the CRF learns. While training, given input sequences and label sequences $D = \left[(X_1,  Y_1), (X_2 , Y_2) , ... , (X_N, Y_N)\right]$, by maximum likelihood estimation (**MLE**), we construct the following objective function:
Y
Yi Wang 已提交
158 159


M
Mimee 已提交
160
$$\DeclareMathOperator*{\argmax}{arg\,max} L(\lambda, D) = - \text{log}\left(\prod_{m=1}^{N}p(Y_m|X_m, W)\right) + C \frac{1}{2}\lVert W\rVert^{2}$$
Y
Yi Wang 已提交
161 162


M
Mimee 已提交
163
This objective function can be solved via back-propagation in an end-to-end manner. While decoding, given input sequences $X$, search for sequence $\bar{Y}$ to maximize the conditional probability $\bar{P}(Y|X)$ via decoding methods (such as *Viterbi*, or [Beam Search Algorithm](https://github.com/PaddlePaddle/book/blob/develop/07.machine_translation/README.en.md#Beam%20Search%20Algorithm)).
Y
Yi Wang 已提交
164

M
Mimee 已提交
165
### Deep Bidirectional LSTM (DB-LSTM) SRL model
Y
Yi Wang 已提交
166

M
Mimee 已提交
167
Given predicates and a sentence, SRL tasks aim to identify arguments of the given predicate and their semantic roles. If a sequence has $n$ predicates, we will process this sequence $n$ times. Here is the breakdown of a straight-forward model:
Y
Yi Wang 已提交
168 169

1. Construct inputs;
L
Luo Tao 已提交
170
 - input 1: predicate, input 2: sentence
M
Mimee 已提交
171 172
 - expand input 1 into a sequence of the same length with input 2's sentence, using one-hot representation;
2. Convert the one-hot sequences from step 1 to vector sequences via a word embedding's lookup table;
L
Luo Tao 已提交
173
3. Learn the representation of input sequences by taking vector sequences from step 2 as inputs;
M
Mimee 已提交
174
4. Take the representation from step 3 as input, label sequence as supervisory signal, and realize sequence tagging tasks.
Y
Yi Wang 已提交
175

M
Mimee 已提交
176
Here, we propose some improvements by introducing two simple but effective features:
Y
Yi Wang 已提交
177

M
Mimee 已提交
178
- predicate context (**ctx-p**): A single predicate word may not describe all the predicate information, especially when the same words appear multiple times in a sentence. With the expanded context, the ambiguity can be largely eliminated. Thus, we extract $n$ words before and after predicate to construct a window chunk.
Y
Yi Wang 已提交
179

M
Mimee 已提交
180
- region mark ($m_r$): The binary marker on a word, $m_r$, takes the value of $1$ when the word is in the predicate context region, and $0$ if not.
Y
Yi Wang 已提交
181

M
Mimee 已提交
182
After these modifications, the model is as follows, as illustrated in Figure 6:
Y
Yi Wang 已提交
183 184

1. Construct inputs
M
Mimee 已提交
185 186 187 188 189
 - Input 1: word sequence. Input 2: predicate. Input 3: predicate context, extract $n$ words before and after predicate. Input 4: region mark sequence, where an entry is 1 if word is located in the predicate context region, 0 otherwise.
 - expand input 2~3 into sequences with the same length with input 1
2. Convert input 1~4 to vector sequences via word embedding lookup tables; While input 1 and 3 shares the same lookup table, input 2 and 4 have separate lookup tables.
3. Take the four vector sequences from step 2 as inputs to bidirectional LSTMs; Train the LSTMs to update representations.
4. Take the representation from step 3 as input to CRF, label sequence as supervisory signal, and complete sequence tagging tasks.
Y
Yi Wang 已提交
190 191


Y
Update  
Yi Wang 已提交
192
<div  align="center">  
D
dangqingqing 已提交
193
<img src="image/db_lstm_network_en.png" width = "60%"  align=center /><br>
Y
Yi Wang 已提交
194 195 196
Fig 6. DB-LSTM for SRL tasks
</div>

L
Luo Tao 已提交
197
## Data Preparation
Y
Yi Wang 已提交
198

M
Mimee 已提交
199
In the tutorial, we use [CoNLL 2005](http://www.cs.upc.edu/~srlconll/) SRL task open dataset as an example. Note that the training set and development set of the CoNLL 2005 SRL task are not free to download after the competition. Currently, only the test set can be obtained, including 23 sections of the Wall Street Journal and three sections of the Brown corpus. In this tutorial, we use the WSJ corpus as the training dataset to explain the model. However, since the training set is small, for a usable neural network SRL system, please consider paying for the full corpus.
Y
Yi Wang 已提交
200

M
Mimee 已提交
201
The original data includes a variety of information such as POS tagging, naming entity recognition, syntax tree, etc. In this tutorial, we only use the data under `test.wsj/words/` (text sequence) and `test.wsj/props/` (label results). The data directory used in this tutorial is as follows:
Y
Yi Wang 已提交
202 203 204 205 206 207 208 209

```text
conll05st-release/
└── test.wsj
    ├── props  # 标注结果
    └── words  # 输入文本序列
```

M
Mimee 已提交
210
The annotation information is derived from the results of Penn TreeBank\[[7](#references)\] and PropBank \[[8](# references)\]. The labeling of the PropBank is different from the labeling methods mentioned before, but shares with it the same underlying principle. For descriptions of the labeling, please refer to the paper \[[9](#references)\].
Y
Yi Wang 已提交
211

M
Mimee 已提交
212
The raw data needs to be preprocessed into formats that PaddlePaddle can handle. The preprocessing consists of the following steps:
Y
Yi Wang 已提交
213

L
Luo Tao 已提交
214 215 216 217 218
1. Merge the text sequence and the tag sequence into the same record;
2. If a sentence contains $n$ predicates, the sentence will be processed $n$ times into $n$ separate training samples, each sample with a different predicate;
3. Extract the predicate context and construct the predicate context region marker;
4. Construct the markings in BIO format;
5. Obtain the integer index corresponding to the word according to the dictionary.
Y
Yi Wang 已提交
219

L
Luo Tao 已提交
220 221 222 223 224 225
```python
# import paddle.v2.dataset.conll05 as conll05
# conll05.corpus_reader does step 1 and 2 as mentioned above.
# conll05.reader_creator does step 3 to 5.
# conll05.test gets preprocessed training instances.
```
Y
Yi Wang 已提交
226

M
Mimee 已提交
227
After preprocessing, a training sample contains nine features, namely: word sequence, predicate, predicate context (5 columns), region mark sequence, label sequence. The following table is an example of a training sample.
Y
Yi Wang 已提交
228

L
Luo Tao 已提交
229
| word sequence | predicate | predicate context(5 columns) | region mark sequence | label sequence|
Y
Yi Wang 已提交
230 231 232 233 234 235 236 237 238 239
|---|---|---|---|---|
| A | set | n't been set . × | 0 | B-A1 |
| record | set | n't been set . × | 0 | I-A1 |
| date | set | n't been set . × | 0 | I-A1 |
| has | set | n't been set . × | 0 | O |
| n't | set | n't been set . × | 1 | B-AM-NEG |
| been | set | n't been set . × | 1 | O |
| set | set | n't been set . × | 1 | B-V |
| . | set | n't been set . × | 1 | O |

L
Luo Tao 已提交
240 241 242 243 244 245 246 247 248
In addition to the data, we provide following resources:

| filename | explanation |
|---|---|
| word_dict | dictionary of input sentences, total 44068 words |
| label_dict | dictionary of labels, total 106 labels |
| predicate_dict | predicate dictionary, total 3162 predicates |
| emb | a pre-trained word vector lookup table, 32-dimentional |

249
We trained a language model on the English Wikipedia to get a word vector lookup table used to initialize the SRL model. While training the SRL model, the word vector lookup table is no longer updated. To learn more about the language model and the word vector lookup table, please refer to the tutorial [word vector](https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/README.md). There are 995,000,000 tokens in the training corpus, and the dictionary size is 4900,000 words. In the CoNLL 2005 training corpus, 5% of the words are not in the 4900,000 words, and we see them all as unknown words, represented by `<unk>`.
L
Luo Tao 已提交
250

M
Mimee 已提交
251
Here we fetch the dictionary, and print its size:
Y
Yi Wang 已提交
252 253

```python
D
dangqingqing 已提交
254 255
import math
import numpy as np
Q
qingqing01 已提交
256
import gzip
L
Luo Tao 已提交
257 258 259
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05

260 261
paddle.init(use_gpu=False, trainer_count=1)

L
Luo Tao 已提交
262 263 264 265 266
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)

D
dangqingqing 已提交
267 268 269
print word_dict_len
print label_dict_len
print pred_len
Y
Yi Wang 已提交
270 271
```

M
Mimee 已提交
272
## Model Configuration
L
Luo Tao 已提交
273

D
dangqingqing 已提交
274
- Define input data dimensions and model hyperparameters.
L
Luo Tao 已提交
275

D
dangqingqing 已提交
276
```python
M
Mimee 已提交
277
mark_dict_len = 2    # value range of region mark. Region mark is either 0 or 1, so range is 2
D
dangqingqing 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290
word_dim = 32        # word vector dimension
mark_dim = 5         # adjacent dimension
hidden_dim = 512     # the dimension of LSTM hidden layer vector is 128 (512/4)
depth = 8            # depth of stacked LSTM

# There are 9 features per sample, so we will define 9 data layers.
# They type for each layer is integer_value_sequence.
def d_type(value_range):
    return paddle.data_type.integer_value_sequence(value_range)

# word sequence
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
# predicate
291
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
D
dangqingqing 已提交
292 293

# 5 features for predicate context
294
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
D
dangqingqing 已提交
295 296 297 298 299 300 301 302 303 304 305
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))

# region marker sequence
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

# label sequence
target = paddle.layer.data(name='target', type=d_type(label_dict_len))
```
306

M
Mimee 已提交
307
Note that `hidden_dim = 512` means a LSTM hidden vector of 128 dimension (512/4). Please refer to PaddlePaddle's official documentation for detail: [lstmemory](http://www.paddlepaddle.org/doc/ui/api/trainer_config_helpers/layers.html#lstmemory)。
D
dangqingqing 已提交
308

M
Mimee 已提交
309
- Transform the word sequence itself, the predicate, the predicate context, and the region mark sequence into embedded vector sequences.
D
dangqingqing 已提交
310

Y
Update  
Yi Wang 已提交
311
```python  
D
dangqingqing 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

# Since word vectorlookup table is pre-trained, we won't update it this time.
# is_static being True prevents updating the lookup table during training.
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
# hyperparameter configurations
default_std = 1 / math.sqrt(hidden_dim) / 3.0
std_default = paddle.attr.Param(initial_std=default_std)
std_0 = paddle.attr.Param(initial_std=0.)

predicate_embedding = paddle.layer.embedding(
    size=word_dim,
    input=predicate,
    param_attr=paddle.attr.Param(
        name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
    size=mark_dim, input=mark, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    paddle.layer.embedding(
        size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
```
L
Luo Tao 已提交
337

M
Mimee 已提交
338
- 8 LSTM units are trained through alternating left-to-right / right-to-left order denoted by the variable `reverse`.
L
Luo Tao 已提交
339

Y
Update  
Yi Wang 已提交
340
```python  
D
dangqingqing 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
hidden_0 = paddle.layer.mixed(
    size=hidden_dim,
    bias_attr=std_default,
    input=[
        paddle.layer.full_matrix_projection(
            input=emb, param_attr=std_default) for emb in emb_layers
    ])

mix_hidden_lr = 1e-3
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = paddle.attr.Param(
    initial_std=default_std, learning_rate=mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
    input=hidden_0,
    act=paddle.activation.Relu(),
    gate_act=paddle.activation.Sigmoid(),
    state_act=paddle.activation.Sigmoid(),
    bias_attr=std_0,
    param_attr=lstm_para_attr)

# stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, depth):
    mix_hidden = paddle.layer.mixed(
L
Luo Tao 已提交
367 368 369 370
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
D
dangqingqing 已提交
371 372 373
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
L
Luo Tao 已提交
374 375
        ])

D
dangqingqing 已提交
376 377
    lstm = paddle.layer.lstmemory(
        input=mix_hidden,
L
Luo Tao 已提交
378 379 380
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
D
dangqingqing 已提交
381
        reverse=((i % 2) == 1),
L
Luo Tao 已提交
382 383 384
        bias_attr=std_0,
        param_attr=lstm_para_attr)

D
dangqingqing 已提交
385 386 387
    input_tmp = [mix_hidden, lstm]
```

M
Mimee 已提交
388
- We will concatenate the output of the top LSTM unit with its input, and project the result into a hidden layer. Then, we put a fully connected layer on top to get the final feature vector representation.
D
dangqingqing 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401

 ```python
 feature_out = paddle.layer.mixed(
 size=label_dict_len,
 bias_attr=std_default,
 input=[
     paddle.layer.full_matrix_projection(
         input=input_tmp[0], param_attr=hidden_para_attr),
     paddle.layer.full_matrix_projection(
         input=input_tmp[1], param_attr=lstm_para_attr)
 ], )
 ```

M
Mimee 已提交
402
- At the end of the network, we use CRF as the cost function; the parameter of CRF cost will be named `crfw`.
D
dangqingqing 已提交
403 404 405

```python
crf_cost = paddle.layer.crf(
L
Luo Tao 已提交
406
    size=label_dict_len,
D
dangqingqing 已提交
407 408 409 410 411 412 413 414
    input=feature_out,
    label=target,
    param_attr=paddle.attr.Param(
        name='crfw',
        initial_std=default_std,
        learning_rate=mix_hidden_lr))
```

M
Mimee 已提交
415
- The CRF decoding layer is used for evaluation and inference. It shares weights with CRF layer.  The sharing of parameters among multiple layers is specified by using the same parameter name in these layers.
D
dangqingqing 已提交
416 417 418 419 420 421 422

```python
crf_dec = paddle.layer.crf_decoding(
   size=label_dict_len,
   input=feature_out,
   label=target,
   param_attr=paddle.attr.Param(name='crfw'))
423
evaluator.sum(input=crf_dec)
D
dangqingqing 已提交
424
```
L
Luo Tao 已提交
425 426 427 428 429 430

## Train model

### Create Parameters

All necessary parameters will be traced created given output layers that we need to use.
Y
Yi Wang 已提交
431 432

```python
Q
qingqing01 已提交
433
parameters = paddle.parameters.create(crf_cost)
Y
Yi Wang 已提交
434 435
```

L
Luo Tao 已提交
436
We can print out parameter name. It will be generated if not specified.
437

L
Luo Tao 已提交
438 439
```python
print parameters.keys()
Y
Yi Wang 已提交
440 441
```

M
Mimee 已提交
442
Now we load the pre-trained word lookup tables from word embeddings trained on the English language Wikipedia.
Y
Yi Wang 已提交
443

L
Luo Tao 已提交
444 445 446
```python
def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
D
dangqingqing 已提交
447 448
        f.read(16)
        return np.fromfile(f, dtype=np.float32).reshape(h, w)
L
Luo Tao 已提交
449
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
Y
Yi Wang 已提交
450 451
```

L
Luo Tao 已提交
452 453
### Create Trainer

M
Mimee 已提交
454
We will create trainer given model topology, parameters, and optimization method. We will use the most basic **SGD** method, which is a momentum optimizer with 0 momentum. Meanwhile, we will set learning rate and regularization.
L
Luo Tao 已提交
455 456 457 458 459 460 461 462 463 464 465

```python
optimizer = paddle.optimizer.Momentum(
    momentum=0,
    learning_rate=2e-2,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(
        average_window=0.5, max_average_window=10000), )

trainer = paddle.trainer.SGD(cost=crf_cost,
                             parameters=parameters,
466 467
                             update_equation=optimizer,
                             extra_layers=crf_dec)
L
Luo Tao 已提交
468
```
Y
Yi Wang 已提交
469

L
Luo Tao 已提交
470
### Trainer
Y
Yi Wang 已提交
471

M
Mimee 已提交
472
As mentioned in data preparation section, we will use CoNLL 2005 test corpus as the training data set. `conll05.test()` outputs one training instance at a time. It is shuffled and batched into mini batches, and used as input.
Y
Yi Wang 已提交
473 474

```python
L
Luo Tao 已提交
475
reader = paddle.batch(
L
Luo Tao 已提交
476 477
    paddle.reader.shuffle(
        conll05.test(), buf_size=8192), batch_size=20)
Y
Yi Wang 已提交
478 479
```

M
Mimee 已提交
480
`feeding` is used to specify the correspondence between data instance and data layer. For example, according to following `feeding`, the 0th column of data instance produced by`conll05.test()` is matched to the data layer named `word_data`.
L
Luo Tao 已提交
481 482

```python
L
Luo Tao 已提交
483
feeding = {
L
Luo Tao 已提交
484 485 486 487 488 489 490 491 492 493
    'word_data': 0,
    'ctx_n2_data': 1,
    'ctx_n1_data': 2,
    'ctx_0_data': 3,
    'ctx_p1_data': 4,
    'ctx_p2_data': 5,
    'verb_data': 6,
    'mark_data': 7,
    'target': 8
}
Y
Yi Wang 已提交
494 495
```

M
Mimee 已提交
496
`event_handler` can be used as callback for training events, it will be used as an argument for the `train` method. Following `event_handler` prints cost during training.
Y
Yi Wang 已提交
497

L
Luo Tao 已提交
498 499 500 501
```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
502 503 504 505 506 507 508 509 510 511 512 513 514
            print "Pass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        if event.batch_id % 1000 == 0:
            result = trainer.test(reader=reader, feeding=feeding)
            print "\nTest with Pass %d, Batch %d, %s" % (event.pass_id, event.batch_id, result.metrics)

    if isinstance(event, paddle.event.EndPass):
        # save parameters
        with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
            parameters.to_tar(f)  

        result = trainer.test(reader=reader, feeding=feeding)
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
L
Luo Tao 已提交
515 516 517 518 519 520 521 522 523
```

`trainer.train` will train the model.

```python
trainer.train(
    reader=reader,
    event_handler=event_handler,
    num_passes=10000,
L
Luo Tao 已提交
524
    feeding=feeding)
Y
Yi Wang 已提交
525 526
```

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
### Application

Aftern training is done, we need to select an optimal model based one performance index to do inference. In this task, one can simply select the model with the least number of marks on the test set. The `paddle.layer.crf_decoding` layer is used in the inference, but its inputs does not include the ground truth label.

```python
predict = paddle.layer.crf_decoding(
    size=label_dict_len,
    input=feature_out,
    param_attr=paddle.attr.Param(name='crfw'))
```

Here, using one testing sample as an example.

```python
test_creator = paddle.dataset.conll05.test()
test_data = []
for item in test_creator():
    test_data.append(item[0:8])
    if len(test_data) == 1:
        break
```

The inference interface `paddle.infer` returns the index of predicting labels. Then printing the tagging results based dictionary `labels_reverse`.


```python
labs = paddle.infer(
    output_layer=predict, parameters=parameters, input=test_data, field='id')
assert len(labs) == len(test_data[0][0])
labels_reverse={}
for (k,v) in label_dict.items():
    labels_reverse[v]=k
pre_lab = [labels_reverse[i] for i in labs]
print pre_lab
```

Y
Yi Wang 已提交
563 564
## Conclusion

M
Mimee 已提交
565
Semantic Role Labeling is an important intermediate step in a wide range of natural language processing tasks. In this tutorial, we use SRL as an example to illustrate using PaddlePaddle to do sequence tagging tasks. The models proposed are from our published paper\[[10](#Reference)\]. We only use test data for illustration since the training data on the CoNLL 2005 dataset is not completely public. This aims to propose an end-to-end neural network model with fewer dependencies on natural language processing tools but is comparable, or even better than traditional models in terms of performance. Please check out our paper for more information and discussions.
Y
Yi Wang 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579

## Reference
1. Sun W, Sui Z, Wang M, et al. [Chinese semantic role labeling with shallow parsing](http://www.aclweb.org/anthology/D09-1#page=1513)[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 3-Volume 3. Association for Computational Linguistics, 2009: 1475-1483.
2. Pascanu R, Gulcehre C, Cho K, et al. [How to construct deep recurrent neural networks](https://arxiv.org/abs/1312.6026)[J]. arXiv preprint arXiv:1312.6026, 2013.
3. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](https://arxiv.org/abs/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
4. Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[J]. arXiv preprint arXiv:1409.0473, 2014.
5. Lafferty J, McCallum A, Pereira F. [Conditional random fields: Probabilistic models for segmenting and labeling sequence data](http://www.jmlr.org/papers/volume15/doppa14a/source/biblio.bib.old)[C]//Proceedings of the eighteenth international conference on machine learning, ICML. 2001, 1: 282-289.
6. 李航. 统计学习方法[J]. 清华大学出版社, 北京, 2012.
7. Marcus M P, Marcinkiewicz M A, Santorini B. [Building a large annotated corpus of English: The Penn Treebank](http://repository.upenn.edu/cgi/viewcontent.cgi?article=1246&context=cis_reports)[J]. Computational linguistics, 1993, 19(2): 313-330.
8. Palmer M, Gildea D, Kingsbury P. [The proposition bank: An annotated corpus of semantic roles](http://www.mitpressjournals.org/doi/pdfplus/10.1162/0891201053630264)[J]. Computational linguistics, 2005, 31(1): 71-106.
9. Carreras X, Màrquez L. [Introduction to the CoNLL-2005 shared task: Semantic role labeling](http://www.cs.upc.edu/~srlconll/st05/papers/intro.pdf)[C]//Proceedings of the Ninth Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005: 152-164.
10. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
580
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
581

Y
Yi Wang 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
600
        document.getElementById("markdown").innerHTML)
Y
Yi Wang 已提交
601 602
</script>
</body>