README.md 20.3 KB
Newer Older
C
choijulie 已提交
1
# Sentiment Analysis
L
Luo Tao 已提交
2

3
The source codes of this section is located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
L
Luo Tao 已提交
4

C
choijulie 已提交
5
## Background
L
fix bug  
livc 已提交
6

C
choijulie 已提交
7
In natural language processing, sentiment analysis refers to determining the emotion expressed in a piece of text. The text can be a sentence, a paragraph, or a document. Emotion categorization can be binary -- positive/negative or happy/sad -- or in three classes -- positive/neutral/negative. Sentiment analysis is applicable in a wide range of services, such as e-commerce sites like Amazon and Taobao, hospitality services like Airbnb and hotels.com, and movie rating sites like Rotten Tomatoes and IMDB. It can be used to gauge from the reviews how the customers feel about the product. Table 1 illustrates an example of sentiment analysis in movie reviews:
W
wangxuguang 已提交
8

C
choijulie 已提交
9
| Movie Review       | Category  |
W
wangxuguang 已提交
10
| --------     | -----  |
C
choijulie 已提交
11 12 13 14
| Best movie of Xiaogang Feng in recent years!| Positive |
| Pretty bad. Feels like a tv-series from a local TV-channel     | Negative |
| Politically correct version of Taken ... and boring as Heck| Negative|
|delightful, mesmerizing, and completely unexpected. The plot is nicely designed.|Positive|
W
wangxuguang 已提交
15

C
choijulie 已提交
16
<p align="center">Table 1 Sentiment Analysis in Movie Reviews</p>
W
wangxuguang 已提交
17

X
Xi Chen 已提交
18
In natural language processing, sentiment analysis can be categorized as a **Text Classification problem**, i.e., to categorize a piece of text to a specific class. It involves two related tasks: text representation and classification. Before the emergence of deep learning techniques, the mainstream methods for text representation include BOW (*bag of words*) and topic modeling, while the latter contains SVM (*support vector machine*) and LR (*logistic regression*).
W
wangxuguang 已提交
19

X
Xi Chen 已提交
20
The BOW model does not capture all the information in a piece of text, as it ignores syntax and grammar and just treats the text as a set of words. For example, “this movie is extremely bad“ and “boring, dull, and empty work” describe very similar semantic meaning, yet their BOW representations have very little similarity. Furthermore, “the movie is bad“ and “the movie is not bad“ have high similarity with BOW features, but they express completely opposite semantics.
W
wangxuguang 已提交
21

M
Mimee 已提交
22
This chapter introduces a deep learning model that handles these issues in BOW. Our model embeds texts into a low-dimensional space and takes word order into consideration. It is an end-to-end framework and it has large performance improvement over traditional methods \[[1](#references)\].
L
fix bug  
livc 已提交
23

C
choijulie 已提交
24
## Model Overview
L
fix bug  
livc 已提交
25

C
choijulie 已提交
26
The model we used in this chapter uses **Convolutional Neural Networks** (**CNNs**) and **Recurrent Neural Networks** (**RNNs**) with some specific extensions.
W
wangxuguang 已提交
27

W
wangxuguang 已提交
28

C
choijulie 已提交
29
### Revisit to the Convolutional Neural Networks for Texts (CNN)
W
wangxuguang 已提交
30

31
The convolutional neural network for texts is introduced in chapter [recommender_system](https://github.com/PaddlePaddle/book/tree/develop/05.recommender_system), here is a brief overview.
L
fix bug  
livc 已提交
32

X
Xi Chen 已提交
33
CNN mainly contains convolution and pooling operation, with versatile combinations in various applications. We firstly apply the convolution operation: we apply the kernel in each window, extracting features. Convolving by the kernel at every window produces a feature map. Next, we apply *max pooling* over time to represent the whole sentence, which is the maximum element across the feature map. In real applications, we will apply multiple CNN kernels on the sentences. It can be implemented efficiently by concatenating the kernels together as a matrix. Also, we can use CNN kernels with different kernel size. Finally, concatenating the resulting features produces a fixed-length representation, which can be combined with a softmax to form the model for the sentiment analysis problem.
L
fix bug  
livc 已提交
34

M
Mimee 已提交
35
For short texts, the aforementioned CNN model can achieve very high accuracy \[[1](#references)\]. If we want to extract more abstract representations, we may apply a deeper CNN model \[[2](#references),[3](#references)\].
C
choijulie 已提交
36 37 38

### Recurrent Neural Network (RNN)

M
Mimee 已提交
39
RNN is an effective model for sequential data. In terms of computability, the RNN is Turing-complete \[[4](#references)\]. Since NLP is a classical problem of sequential data, the RNN, especially its variant LSTM\[[5](#references)\]), achieves state-of-the-art performance on various NLP tasks, such as language modeling, syntax parsing, POS-tagging, image captioning, dialog, machine translation, and so forth.
L
fix bug  
livc 已提交
40

41
<p align="center">
T
Tao Luo 已提交
42
<img src="image/rnn.png" width = "60%" align="center"/><br/>
C
choijulie 已提交
43
Figure 1. An illustration of an unfolded RNN in time.
44
</p>
L
fix bug  
livc 已提交
45

C
choijulie 已提交
46
As shown in Figure 1, we unfold an RNN: at the $t$-th time step, the network takes two inputs: the $t$-th input vector $\vec{x_t}$ and the latent state from the last time-step $\vec{h_{t-1}}$. From those, it computes the latent state of the current step $\vec{h_t}$. This process is repeated until all inputs are consumed. Denoting the RNN as function $f$, it can be formulated as follows:
W
wangxuguang 已提交
47

W
wanglun 已提交
48
$$\vec{h_t}=f(\vec{x_t},\vec{h_{t-1}})=\sigma(W_{xh}\vec{x_t}+W_{hh}\vec{h_{t-1}}+\vec{b_h})$$
W
wangxuguang 已提交
49

C
choijulie 已提交
50
where $W_{xh}$ is the weight matrix to feed into the latent layer; $W_{hh}$ is the latent-to-latent matrix; $b_h$ is the latent bias and $\sigma$ refers to the $sigmoid$ function.
51

X
Xi Chen 已提交
52
In NLP, words are often represented as one-hot vectors and then mapped to an embedding. The embedded feature goes through an RNN as input $x_t$ at every time step. Moreover, we can add other layers on top of RNN, such as a deep or stacked RNN. Finally, the last latent state may be used as a feature for sentence classification.
W
wangxuguang 已提交
53

C
choijulie 已提交
54
### Long-Short Term Memory (LSTM)
L
fix bug  
livc 已提交
55

M
Mimee 已提交
56
Training an RNN on long sequential data sometimes leads to the gradient vanishing or exploding\[[6](#references)\]. To solve this problem Hochreiter S, Schmidhuber J. (1997) proposed **Long Short Term Memory** (LSTM)\[[5](#references)\]).
W
wangxuguang 已提交
57

C
choijulie 已提交
58
Compared to the structure of a simple RNN, an LSTM includes memory cell $c$, input gate $i$, forget gate $f$ and output gate $o$. These gates and memory cells dramatically improve the ability for the network to handle long sequences. We can formulate the **LSTM-RNN**, denoted as a function $F$, as follows:
W
wangxuguang 已提交
59

W
wangxuguang 已提交
60
$$ h_t=F(x_t,h_{t-1})$$
W
wangxuguang 已提交
61

M
Mimee 已提交
62
$F$ contains following formulations\[[7](#references)\]
D
daming-lu 已提交
63 64 65 66 67
$$ i_t = \sigma{(W_{xi}x_t+W_{hi}h_{t-1}+W_{ci}c_{t-1}+b_i)} $$
$$ f_t = \sigma(W_{xf}x_t+W_{hf}h_{t-1}+W_{cf}c_{t-1}+b_f) $$
$$ c_t = f_t\odot c_{t-1}+i_t\odot tanh(W_{xc}x_t+W_{hc}h_{t-1}+b_c) $$
$$ o_t = \sigma(W_{xo}x_t+W_{ho}h_{t-1}+W_{co}c_{t}+b_o) $$
$$ h_t = o_t\odot tanh(c_t) $$
C
choijulie 已提交
68 69

In the equation,$i_t, f_t, c_t, o_t$ stand for input gate, forget gate, memory cell and output gate, respectively. $W$ and $b$ are model parameters, $\tanh$ is a hyperbolic tangent, and $\odot$ denotes an element-wise product operation. The input gate controls the magnitude of the new input into the memory cell $c$; the forget gate controls the memory propagated from the last time step; the output gate controls the magnitutde of the output. The three gates are computed similarly with different parameters, and they influence memory cell $c$ separately, as shown in Figure 2:
L
fix bug  
livc 已提交
70

W
wangxuguang 已提交
71
<p align="center">
C
choijulie 已提交
72 73
<img src="image/lstm_en.png" width = "65%" align="center"/><br/>
Figure 2. LSTM at time step $t$ [7].
W
wangxuguang 已提交
74
</p>
L
fix bug  
livc 已提交
75

X
Xi Chen 已提交
76
LSTM enhances the ability of considering long-term reliance, with the help of memory cell and gate. Similar structures are also proposed in Gated Recurrent Unit (GRU)\[[8](Reference)\] with a simpler design. **The structures are still similar to RNN, though with some modifications (As shown in Figure 2), i.e., latent status depends on input as well as the latent status of the last time step, and the process goes on recurrently until all inputs are consumed:**
W
wangxuguang 已提交
77

W
wangxuguang 已提交
78
$$ h_t=Recrurent(x_t,h_{t-1})$$
C
choijulie 已提交
79
where $Recrurent$ is a simple RNN, GRU or LSTM.
W
wangxuguang 已提交
80

C
choijulie 已提交
81
### Stacked Bidirectional LSTM
L
fix bug  
livc 已提交
82

M
Mimee 已提交
83
For vanilla LSTM, $h_t$ contains input information from previous time-step $1..t-1$ context. We can also apply an RNN with reverse-direction to take successive context $t+1…n$ into consideration. Combining constructing deep RNN (deeper RNN can contain more abstract and higher level semantic), we can design structures with deep stacked bidirectional LSTM to model sequential data\[[9](#references)\].
L
fix bug  
livc 已提交
84

C
choijulie 已提交
85
As shown in Figure 3 (3-layer RNN), odd/even layers are forward/reverse LSTM. Higher layers of LSTM take lower-layers LSTM as input, and the top-layer LSTM produces a fixed length vector by max-pooling (this representation considers contexts from previous and successive words for higher-level abstractions). Finally, we concatenate the output to a softmax layer for classification.
L
fix bug  
livc 已提交
86

87
<p align="center">
C
choijulie 已提交
88 89
<img src="image/stacked_lstm_en.png" width=450><br/>
Figure 3. Stacked Bidirectional LSTM for NLP modeling.
90
</p>
W
wangxuguang 已提交
91

C
choijulie 已提交
92
## Dataset
L
fix bug  
livc 已提交
93

X
Xi Chen 已提交
94
We use [IMDB](http://ai.stanford.edu/%7Eamaas/data/sentiment/) dataset for sentiment analysis in this tutorial, which consists of 50,000 movie reviews split evenly into a 25k train set and a 25k test set. In the labeled train/test sets, a negative review has a score <= 4 out of 10, and a positive review has a score >= 7 out of 10.
L
fix bug  
livc 已提交
95

C
choijulie 已提交
96 97 98 99 100 101 102 103 104 105
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens`, and `wmt14`, etc. There's no need for us to manually download and preprocess IMDB.

After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.


## Model Structure

### Initialize PaddlePaddle

We must import and initialize PaddlePaddle (enable/disable GPU, set the number of trainers, etc).
W
wangxuguang 已提交
106

H
hedaoyuan 已提交
107
```python
108 109
import sys
import paddle.v2 as paddle
C
choijulie 已提交
110 111 112

# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
113
```
L
fix bug  
livc 已提交
114

C
choijulie 已提交
115
As alluded to in section [Model Overview](#model-overview), here we provide the implementations of both Text CNN and Stacked-bidirectional LSTM models.
L
fix bug  
livc 已提交
116

C
choijulie 已提交
117 118 119 120 121
### Text Convolution Neural Network (Text CNN)

We create a neural network `convolution_net` as the following snippet code.

Note: `paddle.networks.sequence_conv_pool` includes both convolution and pooling layer operations.
L
fix bug  
livc 已提交
122

H
hedaoyuan 已提交
123
```python
C
choijulie 已提交
124
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
125 126 127 128 129 130 131 132 133 134
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)
    output = paddle.layer.fc(input=[conv_3, conv_4],
                             size=class_dim,
                             act=paddle.activation.Softmax())
C
choijulie 已提交
135 136
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
F
fengjiayi 已提交
137
    return cost, output
138
```
L
fix bug  
livc 已提交
139

C
choijulie 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
1. Define input data and its dimension

    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `convolution_net`, the input to the network is defined in `paddle.layer.data`.

1. Define Classifier

    The above Text CNN network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.

1. Define Loss Function

    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.

#### Stacked bidirectional LSTM

We create a neural network `stacked_lstm_net` as below.
L
fix bug  
livc 已提交
155

H
hedaoyuan 已提交
156
```python
W
wangxuguang 已提交
157
def stacked_lstm_net(input_dim,
158 159 160
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
C
choijulie 已提交
161
                     stacked_num=3):
162 163
    """
    A Wrapper for sentiment classification task.
X
Xi Chen 已提交
164
    This network uses a bi-directional recurrent network,
165
    consisting of three LSTM layers. This configuration is
166
    motivated from the following paper, but uses few layers.
167 168 169 170 171 172 173
        http://www.aclweb.org/anthology/P15-1109
    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    """
W
wangxuguang 已提交
174 175
    assert stacked_num % 2 == 1

H
hedaoyuan 已提交
176 177
    fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
    lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
178
    para_attr = [fc_para_attr, lstm_para_attr]
H
hedaoyuan 已提交
179
    bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
180 181 182 183 184 185 186 187 188 189 190 191
    relu = paddle.activation.Relu()
    linear = paddle.activation.Linear()

    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    fc1 = paddle.layer.fc(input=emb,
                          size=hid_dim,
                          act=linear,
                          bias_attr=bias_attr)
    lstm1 = paddle.layer.lstmemory(
F
fengjiayi 已提交
192
        input=fc1, act=relu, bias_attr=bias_attr)
W
wangxuguang 已提交
193 194 195

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
196 197 198 199 200 201
        fc = paddle.layer.fc(input=inputs,
                             size=hid_dim,
                             act=linear,
                             param_attr=para_attr,
                             bias_attr=bias_attr)
        lstm = paddle.layer.lstmemory(
W
wangxuguang 已提交
202 203 204
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
F
fengjiayi 已提交
205
            bias_attr=bias_attr)
W
wangxuguang 已提交
206 207
        inputs = [fc, lstm]

C
choijulie 已提交
208 209 210 211
    fc_last = paddle.layer.pooling(
        input=inputs[0], pooling_type=paddle.pooling.Max())
    lstm_last = paddle.layer.pooling(
        input=inputs[1], pooling_type=paddle.pooling.Max())
212 213 214 215 216 217
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)

C
choijulie 已提交
218 219
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
F
fengjiayi 已提交
220
    return cost, output
W
wangxuguang 已提交
221
```
L
fix bug  
livc 已提交
222

C
choijulie 已提交
223
1. Define input data and its dimension
L
fix bug  
livc 已提交
224

C
choijulie 已提交
225
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `stacked_lstm_net`, the input to the network is defined in `paddle.layer.data`.
L
fix bug  
livc 已提交
226

C
choijulie 已提交
227 228 229 230 231 232 233
1. Define Classifier

    The above stacked bidirectional LSTM network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.

1. Define Loss Function

    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
L
fix bug  
livc 已提交
234 235


C
choijulie 已提交
236
To reiterate, we can either invoke `convolution_net` or `stacked_lstm_net`.
L
fix bug  
livc 已提交
237

H
hedaoyuan 已提交
238
```python
C
choijulie 已提交
239 240 241 242 243
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2

# option 1
F
fengjiayi 已提交
244
[cost, output] = convolution_net(dict_dim, class_dim=class_dim)
C
choijulie 已提交
245
# option 2
F
fengjiayi 已提交
246
# [cost, output] = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
247
```
L
fix bug  
livc 已提交
248

C
choijulie 已提交
249 250 251 252 253
## Model Training

### Define Parameters

First, we create the model parameters according to the previous model configuration `cost`.
L
fix bug  
livc 已提交
254

H
hedaoyuan 已提交
255
```python
C
choijulie 已提交
256 257
# create parameters
parameters = paddle.parameters.create(cost)
258
```
L
fix bug  
livc 已提交
259

C
choijulie 已提交
260 261 262 263
### Create Trainer

Before jumping into creating a training module, algorithm setting is also necessary.
Here we specified `Adam` optimization algorithm via `paddle.optimizer`.
L
fix bug  
livc 已提交
264

H
hedaoyuan 已提交
265
```python
C
choijulie 已提交
266 267 268 269 270 271 272 273 274 275
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=2e-3,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# create trainer
trainer = paddle.trainer.SGD(cost=cost,
                                parameters=parameters,
                                update_equation=adam_optimizer)
276
```
L
fix bug  
livc 已提交
277

C
choijulie 已提交
278 279 280
### Training

`paddle.dataset.imdb.train()` will yield records during each pass, after shuffling, a batch input is generated for training.
L
fix bug  
livc 已提交
281

H
hedaoyuan 已提交
282
```python
C
choijulie 已提交
283 284 285 286 287 288 289
train_reader = paddle.batch(
    paddle.reader.shuffle(
        lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
    batch_size=100)

test_reader = paddle.batch(
    lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
290
```
C
choijulie 已提交
291 292 293

`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `paddle.dataset.imdb.train()` corresponds to `word` feature.

H
hedaoyuan 已提交
294
```python
C
choijulie 已提交
295
feeding = {'word': 0, 'label': 1}
H
hedaoyuan 已提交
296
```
C
choijulie 已提交
297 298 299

Callback function `event_handler` will be invoked to track training progress when a pre-defined event happens.

H
hedaoyuan 已提交
300
```python
C
choijulie 已提交
301 302 303 304 305 306 307 308 309
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "\nPass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        else:
            sys.stdout.write('.')
            sys.stdout.flush()
    if isinstance(event, paddle.event.EndPass):
F
fengjiayi 已提交
310
        with open('./params_pass_%d.tar' % event.pass_id, 'w') as f:
311
            trainer.save_parameter_to_tar(f)
F
fengjiayi 已提交
312

C
choijulie 已提交
313 314
        result = trainer.test(reader=test_reader, feeding=feeding)
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
315 316
```

C
choijulie 已提交
317
Finally, we can invoke `trainer.train` to start training:
H
hedaoyuan 已提交
318 319

```python
C
choijulie 已提交
320 321 322 323 324
trainer.train(
    reader=train_reader,
    event_handler=event_handler,
    feeding=feeding,
    num_passes=10)
H
hedaoyuan 已提交
325 326
```

327

C
choijulie 已提交
328
## Conclusion
L
fix bug  
livc 已提交
329

C
choijulie 已提交
330
In this chapter, we use sentiment analysis as an example to introduce applying deep learning models on end-to-end short text classification, as well as how to use PaddlePaddle to implement the model. Meanwhile, we briefly introduce two models for text processing: CNN and RNN. In following chapters, we will see how these models can be applied in other tasks.
L
fix bug  
livc 已提交
331

M
Mimee 已提交
332
## References
L
fix bug  
livc 已提交
333

W
wangxuguang 已提交
334
1. Kim Y. [Convolutional neural networks for sentence classification](http://arxiv.org/pdf/1408.5882)[J]. arXiv preprint arXiv:1408.5882, 2014.
X
Xi Chen 已提交
335
2. Kalchbrenner N, Grefenstette E, Blunsom P. [A convolutional neural network for modeling sentences](http://arxiv.org/pdf/1404.2188.pdf?utm_medium=App.net&utm_source=PourOver)[J]. arXiv preprint arXiv:1404.2188, 2014.
W
wangxuguang 已提交
336 337 338 339 340 341 342
3. Yann N. Dauphin, et al. [Language Modeling with Gated Convolutional Networks](https://arxiv.org/pdf/1612.08083v1.pdf)[J] arXiv preprint arXiv:1612.08083, 2016.
4. Siegelmann H T, Sontag E D. [On the computational power of neural nets](http://research.cs.queensu.ca/home/akl/cisc879/papers/SELECTED_PAPERS_FROM_VARIOUS_SOURCES/05070215382317071.pdf)[C]//Proceedings of the fifth annual workshop on Computational learning theory. ACM, 1992: 440-449.
5. Hochreiter S, Schmidhuber J. [Long short-term memory](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)[J]. Neural computation, 1997, 9(8): 1735-1780.
6. Bengio Y, Simard P, Frasconi P. [Learning long-term dependencies with gradient descent is difficult](http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf)[J]. IEEE transactions on neural networks, 1994, 5(2): 157-166.
7. Graves A. [Generating sequences with recurrent neural networks](http://arxiv.org/pdf/1308.0850)[J]. arXiv preprint arXiv:1308.0850, 2013.
8. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://arxiv.org/pdf/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
9. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.
L
Luo Tao 已提交
343 344

<br/>
L
Luo Tao 已提交
345
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.