train.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
JiabinYang 已提交
15
from __future__ import print_function
16

L
liaogang 已提交
17
import os
L
liaogang 已提交
18
from PIL import Image
19
import numpy
W
Wang,Jeff 已提交
20 21
import paddle
import paddle.fluid as fluid
L
Luo Tao 已提交
22

23 24
BATCH_SIZE = 64
PASS_NUM = 5
Y
yuyang 已提交
25

L
Luo Tao 已提交
26

27 28 29 30 31 32
def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_loss = fluid.layers.mean(loss)
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc
L
Luo Tao 已提交
33 34


35 36 37 38
def multilayer_perceptron(img, label):
    img = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    return loss_net(hidden, label)
L
Luo Tao 已提交
39 40


41 42 43 44 45
def softmax_regression(img, label):
    return loss_net(img, label)


def convolutional_neural_network(img, label):
W
Wang,Jeff 已提交
46
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
L
Luo Tao 已提交
47 48 49 50 51
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
W
Wang,Jeff 已提交
52 53 54
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
L
Luo Tao 已提交
55 56 57 58 59
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
W
Wang,Jeff 已提交
60
        act="relu")
61
    return loss_net(conv_pool_2, label)
L
Luo Tao 已提交
62

Q
qijun 已提交
63

64 65 66 67 68 69 70
def train(nn_type,
          use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Q
qijun 已提交
71

72 73
    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
Q
qijun 已提交
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    if nn_type == 'softmax_regression':
        net_conf = softmax_regression
    elif nn_type == 'multilayer_perceptron':
        net_conf = multilayer_perceptron
    else:
        net_conf = convolutional_neural_network

    prediction, avg_loss, acc = net_conf(img, label)

    test_program = fluid.default_main_program().clone(for_test=True)

    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    optimizer.minimize(avg_loss)

    def train_test(train_test_program, train_test_feed, train_test_reader):
        acc_set = []
        avg_loss_set = []
        for test_data in train_test_reader():
            acc_np, avg_loss_np = exe.run(
                program=train_test_program,
                feed=train_test_feed.feed(test_data),
                fetch_list=[acc, avg_loss])
            acc_set.append(float(acc_np))
            avg_loss_set.append(float(avg_loss_np))
        # get test acc and loss
        acc_val_mean = numpy.array(acc_set).mean()
        avg_loss_val_mean = numpy.array(avg_loss_set).mean()
        return avg_loss_val_mean, acc_val_mean
Q
qijun 已提交
103

104
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
W
Wang,Jeff 已提交
105

106
    exe = fluid.Executor(place)
W
Wang,Jeff 已提交
107

W
Wang,Jeff 已提交
108 109
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500),
110 111 112 113
        batch_size=BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
Q
qijun 已提交
114

115 116 117
    exe.run(fluid.default_startup_program())
    main_program = fluid.default_main_program()
    epochs = [epoch_id for epoch_id in range(PASS_NUM)]
Q
qijun 已提交
118 119

    lists = []
120 121 122 123 124 125 126 127
    step = 0
    for epoch_id in epochs:
        for step_id, data in enumerate(train_reader()):
            metrics = exe.run(
                main_program,
                feed=feeder.feed(data),
                fetch_list=[avg_loss, acc])
            if step % 100 == 0:
128
                print("Pass %d, Batch %d, Cost %f" % (epoch_id, step,
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
                                                      metrics[0]))
            step += 1
        # test for epoch
        avg_loss_val, acc_val = train_test(
            train_test_program=test_program,
            train_test_reader=test_reader,
            train_test_feed=feeder)

        print("Test with Epoch %d, avg_cost: %s, acc: %s" %
              (epoch_id, avg_loss_val, acc_val))
        lists.append((epoch_id, avg_loss_val, acc_val))
        if save_dirname is not None:
            fluid.io.save_inference_model(
                save_dirname, ["img"], [prediction],
                exe,
                model_filename=model_filename,
                params_filename=params_filename)
Q
qijun 已提交
146 147 148

    # find the best pass
    best = sorted(lists, key=lambda list: float(list[1]))[0]
J
JiabinYang 已提交
149 150
    print('Best pass is %s, testing Avgcost is %s' % (best[0], best[1]))
    print('The classification accuracy is %.2f%%' % (float(best[2]) * 100))
Q
qijun 已提交
151

152 153 154 155 156 157 158 159 160 161 162

def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

L
liaogang 已提交
163 164 165
    def load_image(file):
        im = Image.open(file).convert('L')
        im = im.resize((28, 28), Image.ANTIALIAS)
166
        im = numpy.array(im).reshape(1, 1, 28, 28).astype(numpy.float32)
A
alexqdh 已提交
167
        im = im / 255.0 * 2.0 - 1.0
L
liaogang 已提交
168 169
        return im

L
liaogang 已提交
170
    cur_dir = os.path.dirname(os.path.realpath(__file__))
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    tensor_img = load_image(cur_dir + '/image/infer_3.png')

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: tensor_img},
            fetch_list=fetch_targets)
        lab = numpy.argsort(results)
        print("Inference result of image/infer_3.png is: %d" % lab[0][0][-1])


def main(use_cuda, nn_type):
    model_filename = None
    params_filename = None
    save_dirname = "recognize_digits_" + nn_type + ".inference.model"

    # call train() with is_local argument to run distributed train
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        save_dirname=save_dirname,
        model_filename=model_filename,
        params_filename=params_filename)
    infer(
        use_cuda=use_cuda,
        save_dirname=save_dirname,
        model_filename=model_filename,
        params_filename=params_filename)
L
liaogang 已提交
210

Q
qijun 已提交
211

Q
qijun 已提交
212
if __name__ == '__main__':
213 214 215 216 217
    use_cuda = False
    # predict = 'softmax_regression' # uncomment for Softmax
    # predict = 'multilayer_perceptron' # uncomment for MLP
    predict = 'convolutional_neural_network'  # uncomment for LeNet5
    main(use_cuda=use_cuda, nn_type=predict)