# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os from PIL import Image import numpy import paddle import paddle.fluid as fluid BATCH_SIZE = 64 PASS_NUM = 5 def loss_net(hidden, label): prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) avg_loss = fluid.layers.mean(loss) acc = fluid.layers.accuracy(input=prediction, label=label) return prediction, avg_loss, acc def multilayer_perceptron(img, label): img = fluid.layers.fc(input=img, size=200, act='tanh') hidden = fluid.layers.fc(input=img, size=200, act='tanh') return loss_net(hidden, label) def softmax_regression(img, label): return loss_net(img, label) def convolutional_neural_network(img, label): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=img, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu") conv_pool_1 = fluid.layers.batch_norm(conv_pool_1) conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu") return loss_net(conv_pool_2, label) def train(nn_type, use_cuda, save_dirname=None, model_filename=None, params_filename=None): if use_cuda and not fluid.core.is_compiled_with_cuda(): return img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') if nn_type == 'softmax_regression': net_conf = softmax_regression elif nn_type == 'multilayer_perceptron': net_conf = multilayer_perceptron else: net_conf = convolutional_neural_network prediction, avg_loss, acc = net_conf(img, label) test_program = fluid.default_main_program().clone(for_test=True) optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer.minimize(avg_loss) def train_test(train_test_program, train_test_feed, train_test_reader): acc_set = [] avg_loss_set = [] for test_data in train_test_reader(): acc_np, avg_loss_np = exe.run( program=train_test_program, feed=train_test_feed.feed(test_data), fetch_list=[acc, avg_loss]) acc_set.append(float(acc_np)) avg_loss_set.append(float(avg_loss_np)) # get test acc and loss acc_val_mean = numpy.array(acc_set).mean() avg_loss_val_mean = numpy.array(avg_loss_set).mean() return avg_loss_val_mean, acc_val_mean place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) train_reader = paddle.batch( paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500), batch_size=BATCH_SIZE) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=BATCH_SIZE) feeder = fluid.DataFeeder(feed_list=[img, label], place=place) exe.run(fluid.default_startup_program()) main_program = fluid.default_main_program() epochs = [epoch_id for epoch_id in range(PASS_NUM)] lists = [] step = 0 for epoch_id in epochs: for step_id, data in enumerate(train_reader()): metrics = exe.run( main_program, feed=feeder.feed(data), fetch_list=[avg_loss, acc]) if step % 100 == 0: print("Pass %d, Batch %d, Cost %f" % (epoch_id, step, metrics[0])) step += 1 # test for epoch avg_loss_val, acc_val = train_test( train_test_program=test_program, train_test_reader=test_reader, train_test_feed=feeder) print("Test with Epoch %d, avg_cost: %s, acc: %s" % (epoch_id, avg_loss_val, acc_val)) lists.append((epoch_id, avg_loss_val, acc_val)) if save_dirname is not None: fluid.io.save_inference_model( save_dirname, ["img"], [prediction], exe, model_filename=model_filename, params_filename=params_filename) # find the best pass best = sorted(lists, key=lambda list: float(list[1]))[0] print('Best pass is %s, testing Avgcost is %s' % (best[0], best[1])) print('The classification accuracy is %.2f%%' % (float(best[2]) * 100)) def infer(use_cuda, save_dirname=None, model_filename=None, params_filename=None): if save_dirname is None: return place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) def load_image(file): im = Image.open(file).convert('L') im = im.resize((28, 28), Image.ANTIALIAS) im = numpy.array(im).reshape(1, 1, 28, 28).astype(numpy.float32) im = im / 255.0 * 2.0 - 1.0 return im cur_dir = os.path.dirname(os.path.realpath(__file__)) tensor_img = load_image(cur_dir + '/image/infer_3.png') inference_scope = fluid.core.Scope() with fluid.scope_guard(inference_scope): # Use fluid.io.load_inference_model to obtain the inference program desc, # the feed_target_names (the names of variables that will be feeded # data using feed operators), and the fetch_targets (variables that # we want to obtain data from using fetch operators). [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model( save_dirname, exe, model_filename, params_filename) # Construct feed as a dictionary of {feed_target_name: feed_target_data} # and results will contain a list of data corresponding to fetch_targets. results = exe.run( inference_program, feed={feed_target_names[0]: tensor_img}, fetch_list=fetch_targets) lab = numpy.argsort(results) print("Inference result of image/infer_3.png is: %d" % lab[0][0][-1]) def main(use_cuda, nn_type): model_filename = None params_filename = None save_dirname = "recognize_digits_" + nn_type + ".inference.model" # call train() with is_local argument to run distributed train train( nn_type=nn_type, use_cuda=use_cuda, save_dirname=save_dirname, model_filename=model_filename, params_filename=params_filename) infer( use_cuda=use_cuda, save_dirname=save_dirname, model_filename=model_filename, params_filename=params_filename) if __name__ == '__main__': use_cuda = False # predict = 'softmax_regression' # uncomment for Softmax # predict = 'multilayer_perceptron' # uncomment for MLP predict = 'convolutional_neural_network' # uncomment for LeNet5 main(use_cuda=use_cuda, nn_type=predict)