Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
1f137f00
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1f137f00
编写于
6月 01, 2018
作者:
W
Wang,Jeff
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update the train.py
上级
fdcd800c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
75 addition
and
73 deletion
+75
-73
02.recognize_digits/train.py
02.recognize_digits/train.py
+75
-73
未找到文件。
02.recognize_digits/train.py
浏览文件 @
1f137f00
import
os
from
PIL
import
Image
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle
import
paddle.fluid
as
fluid
with_gpu
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
def
softmax_regression
(
img
):
def
softmax_regression
():
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
predict
=
paddle
.
layer
.
fc
(
input
=
img
,
size
=
10
,
act
=
paddle
.
activation
.
Softmax
())
return
predict
def
multilayer_perceptron
(
img
):
# The first fully-connected layer
hidden1
=
paddle
.
layer
.
fc
(
input
=
img
,
size
=
128
,
act
=
paddle
.
activation
.
Relu
())
# The second fully-connected layer and the according activation function
hidden2
=
paddle
.
layer
.
fc
(
input
=
hidden1
,
size
=
64
,
act
=
paddle
.
activation
.
Relu
()
)
def
multilayer_perceptron
():
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
# first fully-connected layer, using ReLu as its activation function
hidden
=
fluid
.
layers
.
fc
(
input
=
img
,
size
=
128
,
act
=
'relu'
)
# second fully-connected layer, using ReLu as its activation function
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
64
,
act
=
'relu'
)
# The thrid fully-connected layer, note that the hidden size should be 10,
# which is the number of unique digits
predict
=
paddle
.
layer
.
fc
(
input
=
hidden2
,
size
=
10
,
act
=
paddle
.
activation
.
Softmax
())
return
predict
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
return
prediction
def
convolutional_neural_network
(
img
):
# first conv layer
conv_pool_1
=
paddle
.
networks
.
simple_img_conv_pool
(
def
convolutional_neural_network
():
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
# first conv pool
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
img
,
filter_size
=
5
,
num_filters
=
20
,
num_channel
=
1
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
paddle
.
activation
.
Relu
())
# second conv layer
conv_pool_2
=
paddle
.
networks
.
simple_img_conv_pool
(
act
=
"relu"
)
conv_pool_1
=
fluid
.
layers
.
batch_norm
(
conv_pool_1
)
# second conv pool
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
num_channel
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
paddle
.
activation
.
Relu
())
# fully-connected layer
predict
=
paddle
.
layer
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
paddle
.
activation
.
Softmax
())
return
predict
act
=
"relu"
)
# output layer with softmax activation function. size = 10 since there are only 10 possible digits.
prediction
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
10
,
act
=
'softmax'
)
return
prediction
def
main
():
paddle
.
init
(
use_gpu
=
with_gpu
,
trainer_count
=
1
)
# define network topology
images
=
paddle
.
layer
.
data
(
name
=
'pixel'
,
type
=
paddle
.
data_type
.
dense_vector
(
784
))
label
=
paddle
.
layer
.
data
(
name
=
'label'
,
type
=
paddle
.
data_type
.
integer_value
(
10
))
def
train_program
():
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Here we can build the prediction network in different ways. Please
# choose one by uncomment corresponding line.
# predict = softmax_regression(images)
# predict = multilayer_perceptron(images)
predict
=
convolutional_neural_network
(
images
)
# predict = softmax_regression(images) # uncomment for Softmax
# predict = multilayer_perceptron() # uncomment for MLP
predict
=
convolutional_neural_network
()
# uncomment for LeNet5
cost
=
paddle
.
layer
.
classification_cost
(
input
=
predict
,
label
=
label
)
# Calculate the cost from the prediction and label.
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
[
avg_cost
,
acc
]
parameters
=
paddle
.
parameters
.
create
(
cost
)
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
0.1
/
128.0
,
momentum
=
0.9
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.0005
*
128
)
)
def
main
():
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
)
,
batch_size
=
64
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
64
)
use_cuda
=
os
.
getenv
(
'WITH_GPU'
,
'0'
)
!=
'0'
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
place
=
place
,
optimizer
=
optimizer
)
# Save the parameter into a directory. The Inferencer can load the parameters from it to do infer
params_dirname
=
"recognize_digits_network.inference.model"
lists
=
[]
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
open
(
'params_pass_%d.tar'
%
event
.
pass_id
,
'w'
)
as
f
:
trainer
.
save_parameter_to_tar
(
f
)
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
avg_cost
,
acc
=
trainer
.
test
(
reader
=
test_reader
,
feed_order
=
[
'img'
,
'label'
])
result
=
trainer
.
test
(
reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
128
))
print
"Test with Pass %d, Cost %f, %s
\n
"
%
(
event
.
pass_id
,
result
.
cost
,
result
.
metrics
)
lists
.
append
((
event
.
pass_id
,
result
.
cost
,
result
.
metrics
[
'classification_error_evaluator'
]))
print
(
"Test with Epoch %d, avg_cost: %s, acc: %s"
%
(
event
.
epoch
,
avg_cost
,
acc
))
# save parameters
trainer
.
save_params
(
params_dirname
)
lists
.
append
((
event
.
epoch
,
avg_cost
,
acc
))
# Train the model now
trainer
.
train
(
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
8192
),
batch_size
=
128
),
num_epochs
=
5
,
event_handler
=
event_handler
,
num_passes
=
5
)
reader
=
train_reader
,
feed_order
=
[
'img'
,
'label'
])
# find the best pass
best
=
sorted
(
lists
,
key
=
lambda
list
:
float
(
list
[
1
]))[
0
]
print
'Best pass is %s, testing Avgcost is %s'
%
(
best
[
0
],
best
[
1
])
print
'The classification accuracy is %.2f%%'
%
(
100
-
float
(
best
[
2
])
*
100
)
print
'The classification accuracy is %.2f%%'
%
(
float
(
best
[
2
])
*
100
)
def
load_image
(
file
):
im
=
Image
.
open
(
file
).
convert
(
'L'
)
im
=
im
.
resize
((
28
,
28
),
Image
.
ANTIALIAS
)
im
=
np
.
array
(
im
).
astype
(
np
.
float32
).
flatten
(
)
im
=
np
.
array
(
im
).
reshape
(
1
,
1
,
28
,
28
).
astype
(
np
.
float32
)
im
=
im
/
255.0
*
2.0
-
1.0
return
im
test_data
=
[]
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
test_data
.
append
((
load_image
(
cur_dir
+
'/image/infer_3.png'
),
))
probs
=
paddle
.
infer
(
output_layer
=
predict
,
parameters
=
parameters
,
input
=
test_data
)
lab
=
np
.
argsort
(
-
probs
)
# probs and lab are the results of one batch data
print
"Label of image/infer_3.png is: %d"
%
lab
[
0
][
0
]
img
=
load_image
(
cur_dir
+
'/image/infer_3.png'
)
inferencer
=
fluid
.
Inferencer
(
# infer_func=softmax_regression, # uncomment for softmax regression
# infer_func=multilayer_perceptron, # uncomment for MLP
infer_func
=
convolutional_neural_network
,
# uncomment for LeNet5
param_path
=
params_dirname
,
place
=
place
)
results
=
inferencer
.
infer
({
'img'
:
img
})
lab
=
np
.
argsort
(
results
)
# probs and lab are the results of one batch data
print
"Label of image/infer_3.png is: %d"
%
lab
[
0
][
0
][
-
1
]
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录