index.html 18.7 KB
Newer Older
1

Y
Yu Yang 已提交
2 3 4 5
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
Y
Yu Yang 已提交
6
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
Y
Yu Yang 已提交
7 8
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yu Yang 已提交
11 12 13 14
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
Y
Yi Wang 已提交
15 16
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yu Yang 已提交
18 19
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
Y
Yi Wang 已提交
20
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
Y
Yu Yang 已提交
21
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
Y
Yu Yang 已提交
22
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yu Yang 已提交
24 25
</head>
<style type="text/css" >
Y
Yu Yang 已提交
26 27 28 29 30 31
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
Y
Yu Yang 已提交
32 33 34 35
}
</style>


Y
Yu Yang 已提交
36
<body>
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yu Yang 已提交
39 40 41 42
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
C
choijulie 已提交
43 44
# Linear Regression
Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example.
Y
Yu Yang 已提交
45

L
Luo Tao 已提交
46
The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book).
Y
Yu Yang 已提交
47

C
choijulie 已提交
48
## Problem Setup
J
julie 已提交
49
Suppose we have a dataset of $n$ real estate properties. Each real estate property will be referred to as **homes** in this chapter for clarity.
Y
Yu Yang 已提交
50

51
Each home is associated with $d$ attributes. The attributes describe characteristics such as the number of rooms in the home, the number of schools or hospitals in the neighborhood, and the traffic condition nearby.
Y
Yu Yang 已提交
52

C
choijulie 已提交
53
In our problem setup, the attribute $x_{i,j}$ denotes the $j$th characteristic of the $i$th home. In addition, $y_i$ denotes the price of the $i$th home. Our task is to predict $y_i$ given a set of attributes $\{x_{i,1}, ..., x_{i,d}\}$. We assume that the price of a home is a linear combination of all of its attributes, namely,
Y
Yu Yang 已提交
54

C
choijulie 已提交
55
$$y_i = \omega_1x_{i,1} + \omega_2x_{i,2} + \ldots + \omega_dx_{i,d} + b,  i=1,\ldots,n$$
Y
Yu Yang 已提交
56

C
choijulie 已提交
57 58 59
where $\vec{\omega}$ and $b$ are the model parameters we want to estimate. Once they are learned, we will be able to predict the price of a home, given the attributes associated with it. We call this model **Linear Regression**. In other words, we want to regress a value against several values linearly. In practice, a linear model is often too simplistic to capture the real relationships between the variables. Yet, because Linear Regression is easy to train and analyze, it has been applied to a large number of real problems. As a result, it is an important topic in many classic Statistical Learning and Machine Learning textbooks \[[2,3,4](#References)\].

## Results Demonstration
60
We first show the result of our model. The dataset [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) is used to train a linear model to predict the home prices in Boston. The figure below shows the predictions the model makes for some home prices. The $X$-axis represents the median value of the prices of similar homes within a bin, while the $Y$-axis represents the home value our linear model predicts. The dotted line represents points where $X=Y$. When reading the diagram, the closer the point is to the dotted line, better the model's prediction.
Y
Yu Yang 已提交
61
<p align="center">
C
choijulie 已提交
62 63
    <img src = "image/predictions_en.png" width=400><br/>
    Figure 1. Predicted Value V.S. Actual Value
Y
Yu Yang 已提交
64 65
</p>

C
choijulie 已提交
66
## Model Overview
Y
Yu Yang 已提交
67

C
choijulie 已提交
68
### Model Definition
Y
Yu Yang 已提交
69

C
choijulie 已提交
70
In the UCI Housing Data Set, there are 13 home attributes $\{x_{i,j}\}$ that are related to the median home price $y_i$, which we aim to predict. Thus, our model can be written as:
Y
Yu Yang 已提交
71 72 73

$$\hat{Y} = \omega_1X_{1} + \omega_2X_{2} + \ldots + \omega_{13}X_{13} + b$$

C
choijulie 已提交
74
where $\hat{Y}$ is the predicted value used to differentiate from actual value $Y$. The model learns parameters $\omega_1, \ldots, \omega_{13}, b$, where the entries of $\vec{\omega}$ are **weights** and $b$ is **bias**.
Y
Yu Yang 已提交
75

C
choijulie 已提交
76
Now we need an objective to optimize, so that the learned parameters can make $\hat{Y}$ as close to $Y$ as possible. Let's refer to the concept of [Loss Function (Cost Function)](https://en.wikipedia.org/wiki/Loss_function). A loss function must output a non-negative value, given any pair of the actual value $y_i$ and the predicted value $\hat{y_i}$. This value reflects the magnitutude of the model error.
Y
Yu Yang 已提交
77

C
choijulie 已提交
78
For Linear Regression, the most common loss function is [Mean Square Error (MSE)](https://en.wikipedia.org/wiki/Mean_squared_error) which has the following form:
Y
Yu Yang 已提交
79 80 81

$$MSE=\frac{1}{n}\sum_{i=1}^{n}{(\hat{Y_i}-Y_i)}^2$$

C
choijulie 已提交
82 83
That is, for a dataset of size $n$, MSE is the average value of the the prediction sqaure errors.

84
### Training Process
Y
Yu Yang 已提交
85

C
choijulie 已提交
86 87 88 89
After setting up our model, there are several major steps to go through to train it:
1. Initialize the parameters including the weights $\vec{\omega}$ and the bias $b$. For example, we can set their mean values as $0$s, and their standard deviations as $1$s.
2. Feedforward. Evaluate the network output and compute the corresponding loss.
3. [Backpropagate](https://en.wikipedia.org/wiki/Backpropagation) the errors. The errors will be propagated from the output layer back to the input layer, during which the model parameters will be updated with the corresponding errors.
90
4. Repeat steps 2~3, until the loss is below a predefined threshold or the maximum number of epochs is reached.
Y
Yu Yang 已提交
91

C
choijulie 已提交
92 93
## Dataset
### An Introduction of the Dataset
94

C
choijulie 已提交
95
The UCI housing dataset has 506 instances. Each instance describes the attributes of a house in surburban Boston.  The attributes are explained below:
96

C
choijulie 已提交
97
| Attribute Name | Characteristic | Data Type |
Y
Yu Yang 已提交
98
| ------| ------ | ------ |
C
choijulie 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
| CRIM | per capita crime rate by town | Continuous|
| ZN | proportion of residential land zoned for lots over 25,000 sq.ft. | Continuous |
| INDUS | proportion of non-retail business acres per town | Continuous |
| CHAS | Charles River dummy variable | Discrete, 1 if tract bounds river; 0 otherwise|
| NOX | nitric oxides concentration (parts per 10 million) | Continuous |
| RM | average number of rooms per dwelling | Continuous |
| AGE | proportion of owner-occupied units built prior to 1940 | Continuous |
| DIS | weighted distances to five Boston employment centres | Continuous |
| RAD | index of accessibility to radial highways | Continuous |
| TAX | full-value property-tax rate per $10,000 | Continuous |
| PTRATIO | pupil-teacher ratio by town | Continuous |
| B | 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town | Continuous |
| LSTAT | % lower status of the population | Continuous |
| MEDV | Median value of owner-occupied homes in $1000's | Continuous |

The last entry is the median home price.

### Preprocessing
#### Continuous and Discrete Data
We define a feature vector of length 13 for each home, where each entry corresponds to an attribute. Our first observation is that, among the 13 dimensions, there are 12 continuous dimensions and 1 discrete dimension.

Note that although a discrete value is also written as numeric values such as 0, 1, or 2, its meaning differs from a continuous value drastically.  The linear difference between two discrete values has no meaning. For example, suppose $0$, $1$, and $2$ are used to represent colors *Red*, *Green*, and *Blue* respectively. Judging from the numeric representation of these colors, *Red* differs more from *Blue* than it does from *Green*. Yet in actuality, it is not true that extent to which the color *Blue* is different from *Red* is greater than the extent to which *Green* is different from *Red*. Therefore, when handling a discrete feature that has $d$ possible values, we usually convert it to $d$ new features where each feature takes a binary value, $0$ or $1$, indicating whether the original value is absent or present. Alternatively, the discrete features can be mapped onto a continuous multi-dimensional vector through an embedding table. For our problem here, because CHAS itself is a binary discrete value, we do not need to do any preprocessing.

#### Feature Normalization
123
We also observe a huge difference among the value ranges of the 13 features (Figure 2). For instance, the values of feature *B* fall in $[0.32, 396.90]$, whereas those of feature *NOX* has a range of $[0.3850, 0.8170]$. An effective optimization would require data normalization. The goal of data normalization is to scale the values of each feature into roughly the same range, perhaps $[-0.5, 0.5]$. Here, we adopt a popular normalization technique where we subtract the mean value from the feature value and divide the result by the width of the original range.
C
choijulie 已提交
124 125 126 127 128

There are at least three reasons for [Feature Normalization](https://en.wikipedia.org/wiki/Feature_scaling) (Feature Scaling):
- A value range that is too large or too small might cause floating number overflow or underflow during computation.
- Different value ranges might result in varying *importances* of different features to the model (at least in the beginning of the training process). This assumption about the data is often unreasonable, making the optimization difficult, which in turn results in increased training time.
- Many machine learning techniques or models (e.g., *L1/L2 regularization* and *Vector Space Model*) assumes that all the features have roughly zero means and their value ranges are similar.
Y
Yu Yang 已提交
129 130

<p align="center">
C
choijulie 已提交
131 132
    <img src = "image/ranges_en.png" width=550><br/>
    Figure 2. The value ranges of the features
Y
Yu Yang 已提交
133 134
</p>

C
choijulie 已提交
135
#### Prepare Training and Test Sets
136
We split the dataset in two, one for adjusting the model parameters, namely, for training the model, and the other for testing. The model error on the former is called the **training error**, and the error on the latter is called the **test error**. Our goal in training a model is to find the statistical dependency between the outputs and the inputs, so that we can predict outputs given new inputs. As a result, the test error reflects the performance of the model better than the training error does. We consider two things when deciding the ratio of the training set to the test set: 1) More training data will decrease the variance of the parameter estimation, yielding more reliable models; 2) More test data will decrease the variance of the test error, yielding more reliable test errors. One standard split ratio is $8:2$.
C
choijulie 已提交
137

138

C
choijulie 已提交
139
When training complex models, we usually have one more split: the validation set. Complex models usually have [Hyperparameters](https://en.wikipedia.org/wiki/Hyperparameter_optimization) that need to be set before the training process, such as the number of layers in the network. Because hyperparameters are not part of the model parameters, they cannot be trained using the same loss function. Thus we will try several sets of hyperparameters to train several models and cross-validate them on the validation set to pick the best one; finally, the selected trained model is tested on the test set. Because our model is relatively simple, we will omit this validation process.
140 141


142 143 144 145 146 147 148 149 150 151 152
## Training

`fit_a_line/trainer.py` demonstrates the training using [PaddlePaddle](http://paddlepaddle.org).

### Datafeeder Configuration
Our program starts with importing necessary packages:

```python
import paddle
import paddle.fluid as fluid
import numpy
153
from __future__ import print_function
154 155 156 157 158 159 160 161 162
```

We encapsulated the [UCI Housing Data Set](https://archive.ics.uci.edu/ml/datasets/Housing) in our Python module `uci_housing`.  This module can

1. download the dataset to `~/.cache/paddle/dataset/uci_housing/housing.data`, if you haven't yet, and
2.  [preprocess](#preprocessing) the dataset.


We define data feeders for test and train. The feeder reads a `BATCH_SIZE` of data each time and feed them to the training/testing process. If the user wants some randomness on the data order, she can define both a `BATCH_SIZE` and a `buf_size`. That way the datafeeder will yield the first `BATCH_SIZE` data out of a shuffle of the first `buf_size` data.
Y
Yu Yang 已提交
163

164 165
```python
BATCH_SIZE = 20
Y
Yu Yang 已提交
166

167 168 169 170
train_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.uci_housing.train(), buf_size=500),
    batch_size=BATCH_SIZE)
Y
Yu Yang 已提交
171

172 173 174 175
test_reader = paddle.batch(
    paddle.reader.shuffle(
        paddle.dataset.uci_housing.test(), buf_size=500),
    batch_size=BATCH_SIZE)
176
```
Q
qiaolongfei 已提交
177

178
### Train Program Configuration
D
daminglu 已提交
179
`train_program` sets up the network structure of this current training model. For linear regression, it is simply a fully connected layer from the input to the output. More complex structures like CNN and RNN will be introduced in later chapters. The `train_program` must return an avg_loss as its first returned parameter because it is needed in backpropagation.
Q
qiaolongfei 已提交
180 181

```python
182 183 184 185 186 187 188 189 190 191 192
def train_program():
    y = fluid.layers.data(name='y', shape=[1], dtype='float32')

    # feature vector of length 13
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
    y_predict = fluid.layers.fc(input=x, size=1, act=None)

    loss = fluid.layers.square_error_cost(input=y_predict, label=y)
    avg_loss = fluid.layers.mean(loss)

    return avg_loss
Q
qiaolongfei 已提交
193 194
```

195 196 197 198 199 200 201 202
### Optimizer Function Configuration

In the following `SGD` optimizer, `learning_rate` specifies the learning rate in the optimization procedure.

```python
def optimizer_program():
    return fluid.optimizer.SGD(learning_rate=0.001)
```
Q
qiaolongfei 已提交
203

204 205
### Specify Place
Specify your training environment, you should specify if the training is on CPU or GPU.
Y
Yu Yang 已提交
206

207
```python
208 209
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
Y
Yu Yang 已提交
210 211
```

C
choijulie 已提交
212
### Create Trainer
D
daminglu 已提交
213
The trainer will take the `train_program` as input.
Y
Yu Yang 已提交
214 215

```python
216 217 218
trainer = fluid.Trainer(
    train_func=train_program,
    place=place,
219
    optimizer_func=optimizer_program)
220
```
Y
Yu Yang 已提交
221

C
choijulie 已提交
222
### Feeding Data
Y
Yu Yang 已提交
223

C
choijulie 已提交
224 225
PaddlePaddle provides the
[reader mechanism](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/reader)
226
for loading the training data. A reader may return multiple columns, and we need a Python dictionary to specify the mapping from column index to data layers.
Y
Yu Yang 已提交
227 228

```python
229
feed_order=['x', 'y']
Y
Yu Yang 已提交
230 231
```

C
choijulie 已提交
232
Moreover, an event handler is provided to print the training progress:
233

L
liaogang 已提交
234
```python
235
# Specify the directory to save the parameters
D
daminglu 已提交
236
params_dirname = "fit_a_line.inference.model"
L
liaogang 已提交
237

238
# Plot data
Q
qiaolongfei 已提交
239 240 241
from paddle.v2.plot import Ploter
train_title = "Train cost"
test_title = "Test cost"
C
choijulie 已提交
242
plot_cost = Ploter(train_title, test_title)
D
daminglu 已提交
243

Q
qiaolongfei 已提交
244
step = 0
Q
qiaolongfei 已提交
245

246
# event_handler prints training and testing info
D
daminglu 已提交
247
def event_handler_plot(event):
Q
qiaolongfei 已提交
248
    global step
249
    if isinstance(event, fluid.EndStepEvent):
250
        if event.step % 10 == 0: #record a test cost every 10 batches
251 252
            test_metrics = trainer.test(
                reader=test_reader, feed_order=feed_order)
Q
qiaolongfei 已提交
253

254
            plot_cost.append(test_title, step, test_metrics[0])
C
choijulie 已提交
255
            plot_cost.plot()
Q
qiaolongfei 已提交
256

257 258 259 260 261 262
            if test_metrics[0] < 10.0:
                # If the accuracy is good enough, we can stop the training.
                print('loss is less than 10.0, stop')
                trainer.stop()

        # We can save the trained parameters for the inferences later
D
daminglu 已提交
263 264
        if params_dirname is not None:
            trainer.save_params(params_dirname)
265 266

        step += 1
Y
Yu Yang 已提交
267 268
```

C
choijulie 已提交
269
### Start Training
270
We now can start training by calling `trainer.train()`.
Y
Yu Yang 已提交
271

272
```python
273 274 275
%matplotlib inline

# The training could take up to a few minutes.
276
trainer.train(
277 278
    reader=train_reader,
    num_epochs=100,
D
daminglu 已提交
279
    event_handler=event_handler_plot,
280 281
    feed_order=feed_order)

Y
Yu Yang 已提交
282 283
```

Q
qiaolongfei 已提交
284
![png](./image/train_and_test.png)
Q
qiaolongfei 已提交
285

286
## Inference
287

D
daminglu 已提交
288
Initialize the Inferencer with the inference_program and the params_dirname, which is where we saved our params
Q
qiaolongfei 已提交
289

290
### Setup the Inference Program
D
daminglu 已提交
291
Similar to the trainer.train, the Inferencer needs to take an inference_program to do inference.
292
Prune the train_program to only have the y_predict.
Q
qiaolongfei 已提交
293 294

```python
295 296 297 298
def inference_program():
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
    y_predict = fluid.layers.fc(input=x, size=1, act=None)
    return y_predict
Q
qiaolongfei 已提交
299 300
```

301 302 303
### Infer
Inferencer will load the trained model from `params_dirname` and use it to infer the unseen data.

Q
qiaolongfei 已提交
304
```python
305
inferencer = fluid.Inferencer(
D
daminglu 已提交
306
    infer_func=inference_program, param_path=params_dirname, place=place)
Q
qiaolongfei 已提交
307

308
batch_size = 10
309 310 311 312
test_reader = paddle.batch(paddle.dataset.uci_housing.test(),batch_size=batch_size)
test_data = test_reader().next()
test_feat = numpy.array([data[0] for data in test_data]).astype("float32")
test_label = numpy.array([data[1] for data in test_data]).astype("float32")
Q
qiaolongfei 已提交
313

314 315 316 317 318 319 320 321 322
results = inferencer.infer({'x': test_feat})

print("infer results: (House Price)")
for k in range(0, batch_size-1):
    print("%d. %f" % (k, results[0][k]))

print("\nground truth:")
for k in range(0, batch_size-1):
    print("%d. %f" % (k, test_label[k]))
Q
qiaolongfei 已提交
323 324
```

C
choijulie 已提交
325 326
## Summary
This chapter introduces *Linear Regression* and how to train and test this model with PaddlePaddle, using the UCI Housing Data Set. Because a large number of more complex models and techniques are derived from linear regression, it is important to understand its underlying theory and limitation.
Y
Yu Yang 已提交
327 328


C
choijulie 已提交
329
## References
Y
Yu Yang 已提交
330 331 332 333 334 335
1. https://en.wikipedia.org/wiki/Linear_regression
2. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning[M]. Springer, Berlin: Springer series in statistics, 2001.
3. Murphy K P. Machine learning: a probabilistic perspective[M]. MIT press, 2012.
4. Bishop C M. Pattern recognition[J]. Machine Learning, 2006, 128.

<br/>
L
Luo Tao 已提交
336
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
337

Y
Yu Yang 已提交
338 339 340 341 342 343 344
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
Y
Yu Yang 已提交
345 346 347
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
Y
Yu Yang 已提交
348
    code = code.replace(/&amp;/g, "&")
Y
Yu Yang 已提交
349 350
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
351
    code = code.replace(/&nbsp;/g, " ")
Y
Yu Yang 已提交
352
    return hljs.highlightAuto(code, [lang]).value;
Y
Yu Yang 已提交
353 354 355
  }
});
document.getElementById("context").innerHTML = marked(
356
        document.getElementById("markdown").innerHTML)
Y
Yu Yang 已提交
357 358
</script>
</body>