aten.py 150.7 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.util import *
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph
S
SunAhong1993 已提交
17

S
SunAhong1993 已提交
18 19 20 21 22 23 24 25 26 27 28 29
dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}

S
SunAhong1993 已提交
30

S
SunAhong1993 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def aten_abs(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。

    TorchScript示例:
        %n0.3 : Tensor = aten::abs(%n.3)
        参数含义:
        %n0.3 (Tensor): 绝对值后的Tensor。
        %n.3 (Tensor): 绝对值前的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.fluid.layers.abs", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
57 58 59
def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。

S
SunAhong1993 已提交
60
    TorchScript示例:
S
SunAhong1993 已提交
61 62 63 64 65 66 67
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
68 69 70 71
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
72 73
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
74
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
75
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
76
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
77
    # 获取当前节点输入的list
S
SunAhong1993 已提交
78 79 80 81 82
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    else:
S
SunAhong1993 已提交
83 84
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
85
        layer_inputs["pool_size"] = inputs_name[1]
S
SunAhong1993 已提交
86 87 88
        current_inputs.append(inputs_name[1])
    layer_attrs["pool_type"] = string("avg")

S
SunAhong1993 已提交
89 90
    graph.add_layer(
        "fluid.layers.adaptive_pool2d",
S
SunAhong1993 已提交
91 92 93 94
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
95 96 97 98 99


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。

S
SunAhong1993 已提交
100
    TorchScript示例:
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
111 112 113 114
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
115 116
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
117
    # 处理输入0,即%150
S
SunAhong1993 已提交
118
    mapper._check_input(
S
SunAhong1993 已提交
119
        graph, inputs_node[0], inputs_name[0], current_outputs, add_dim=True)
S
SunAhong1993 已提交
120 121
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
122
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
123 124
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
125
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
S
SunAhong1993 已提交
126
    layer_inputs["y"] = inputs_name[2]
S
SunAhong1993 已提交
127
    # 获取当前节点输入的list
S
SunAhong1993 已提交
128 129 130 131 132
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
S
SunAhong1993 已提交
133 134
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs)
135
        layer_inputs["beta"] = inputs_name[3]
S
SunAhong1993 已提交
136 137 138 139 140
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
S
SunAhong1993 已提交
141 142
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
                            current_outputs)
143
        layer_inputs["alpha"] = inputs_name[4]
S
SunAhong1993 已提交
144 145
        current_inputs.append(inputs_name[4])

S
SunAhong1993 已提交
146
    graph.add_layer(
S
SunAhong1993 已提交
147
        "paddle.addmm",
S
SunAhong1993 已提交
148 149 150 151
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
152 153


S
SunAhong1993 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + y。

    TorchScript示例:
        %296 : int = aten::add(%i.12, %288)
        参数含义:
        %296 (-): 相加结果。
        %i.12 (-): 输入数值 x。
        %288 (-): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.add", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
184
def aten_add_(mapper, graph, node):
S
SunAhong1993 已提交
185
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
S
SunAhong1993 已提交
186

S
SunAhong1993 已提交
187
    TorchScript示例:
S
SunAhong1993 已提交
188
        %137 : Tensor = aten::add(%136, %130, %130)
S
SunAhong1993 已提交
189 190 191 192 193 194 195
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
196 197 198 199
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
200 201
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
202
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
203
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
204 205 206
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
    mapper._check_input(
S
SunAhong1993 已提交
207
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
S
SunAhong1993 已提交
208
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
209
    # 获取当前节点输入的list
S
SunAhong1993 已提交
210 211 212 213 214
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%151
    if inputs_name[2] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
    else:
S
SunAhong1993 已提交
215 216
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
217
        layer_inputs["alpha"] = inputs_name[2]
S
SunAhong1993 已提交
218 219 220
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
221
        "prim.add_", inputs=layer_inputs, outputs=layer_outputs, **layer_attrs)
S
SunAhong1993 已提交
222
    return current_inputs, current_outputs
S
SunAhong1993 已提交
223 224


S
SunAhong1993 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。

    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
245
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
246 247 248 249 250 251 252 253
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.and", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
254
def aten_append(mapper, graph, node):
S
SunAhong1993 已提交
255 256 257 258 259 260 261 262 263 264 265
    """ 构造对list进行append的PaddleLayer。

    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
266
    layer_outputs = [inputs_name[0]]
S
SunAhong1993 已提交
267
    # 获取当前节点输出的list
S
SunAhong1993 已提交
268
    current_outputs = [inputs_name[0]]
S
SunAhong1993 已提交
269
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
270
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
271 272
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
273
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
274
    layer_inputs["element"] = inputs_name[1]
S
SunAhong1993 已提交
275
    # 获取当前节点输入的list
S
SunAhong1993 已提交
276 277 278 279
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.append", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
280 281


S
SunAhong1993 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。

    TorchScript示例:
        有三种情况,分别处理。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
                                current_outputs)
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
S
SunAhong1993 已提交
308 309 310 311
        if mapper.attrs[inputs_name[1]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
S
SunAhong1993 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
                                current_outputs)
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
S
SunAhong1993 已提交
332 333 334 335
        if mapper.attrs[inputs_name[2]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
S
SunAhong1993 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
                                current_outputs)
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs)
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
S
SunAhong1993 已提交
364 365 366 367
        if mapper.attrs[inputs_name[3]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
S
SunAhong1993 已提交
368 369 370 371 372 373 374 375 376 377 378 379
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    if "pool" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["pool"] += 1
    else:
        mapper.dygraph_name_id["pool"] = 0
    pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [pool_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
    layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%539
    layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%540
    layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6]],
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
    layer_attrs["pool_type"] = string("avg")

    graph.add_layer(
S
SunAhong1993 已提交
433
        "paddle.nn.Pool2D",
S
SunAhong1993 已提交
434 435 436 437 438 439
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。

    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
    if "batchnorm" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["batchnorm"] += 1
    else:
        mapper.dygraph_name_id["batchnorm"] = 0
    batchnorm_name = "batchnorm" + str(mapper.dygraph_name_id["batchnorm"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [batchnorm_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[batchnorm_name + ".weight"] = weights
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[batchnorm_name + ".bias"] = bias
    else:
        mapper.paddle_params[batchnorm_name + ".bias"] = False
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
    mapper.paddle_params[batchnorm_name + "._mean"] = mean
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
    mapper.paddle_params[batchnorm_name + "._variance"] = var
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
S
SunAhong1993 已提交
499
        "paddle.nn.BatchNorm",
S
SunAhong1993 已提交
500 501 502 503 504 505
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
534
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
535 536 537 538 539 540 541 542 543
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "fluid.layers.concat",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。

    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
        layer_attrs["dim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["dim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    graph.add_layer(
        "fluid.layers.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。

    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.contain", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
def aten_constant_pad_nd(mapper, graph, node):
    """ 构造填充固定值的PaddleLayer。

    TorchScript示例:
        %58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
        参数含义:
        %58 (Tensor): 输出,填充后的Tensor。
        %input1.24 (Tensor): 需要填充的Tensor。
        %4876 (list): 填充大小。
        %42 (-): 填充值。
    """
    if "constant_pad" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["constant_pad"] += 1
    else:
        mapper.dygraph_name_id["constant_pad"] = 0
    constant_pad_name = "constant_pad" + str(mapper.dygraph_name_id[
        "constant_pad"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [constant_pad_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input1.24
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4876
    layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%42
    layer_attrs["value"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        "fluid.layers.shape",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_shape"])
    graph.add_layer(
        "prim.len",
        inputs={"input": inputs_name[0] + "_shape"},
        outputs=[inputs_name[0] + "_len"])

    def add_pad_layers(kernel, dim):
        graph.add_layer(
            "prim.ne",
            inputs={"x": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_cond"],
            y=dim)
        graph.add_layer(
            "prim.if", {'input': inputs_name[0] + "_cond"},
            outputs=[inputs_name[0] + "_if", output_name])
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
        block = PaddleGraph(if_layer, graph_type="dygraph")
        block.add_layer(
            "prim.sub",
            inputs={"y": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_len0"],
            x=dim)
        block.add_layer(
            "prim.len2list",
            inputs={"len": inputs_name[0] + "_len0"},
            outputs=[inputs_name[0] + "_list"])
        block.add_layer(
            "paddle.tensor.unsqueeze",
            inputs={"x": inputs_name[0],
                    "axis": inputs_name[0] + "_list"},
            outputs=[inputs_name[0] + "_var"])
        block.add_layer(
            kernel,
            inputs={"input": inputs_name[0] + "_var"},
            outputs=layer_outputs,
            **layer_attrs)
        block.add_layer(
            "paddle.tensor.squeeze",
            inputs={"x": output_name,
                    "axis": inputs_name[0] + "_list"},
            outputs=[output_name])
        if_layer.add_block(block)
        block = PaddleGraph(if_layer, graph_type="dygraph")
        layer_inputs["input"] = inputs_name[0]
        block.add_layer(
            kernel, inputs=layer_inputs, outputs=layer_outputs, **layer_attrs)
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[0]
        if_layer.inputs["input-1"] = inputs_name[0] + "_len"

    if len(layer_attrs["padding"]) == 2:
        add_pad_layers("paddle.nn.ConstantPad1d", 3)
    elif len(layer_attrs["padding"]) == 4:
        add_pad_layers("paddle.nn.ConstantPad2d", 4)
    elif len(layer_attrs["padding"]) == 6:
        add_pad_layers("paddle.nn.ConstantPad3d", 5)
    else:
        raise Exception("The lenght of padding list must be 2, 4 or 6!")
    return current_inputs, current_outputs


718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。

    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
747
def aten_conv2d(mapper, graph, node):
S
SunAhong1993 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761
    """ 构造conv2d的PaddleLayer。

    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
        %30 (int): 膨胀系数大小。
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
762 763 764 765 766
    if "conv" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["conv"] += 1
    else:
        mapper.dygraph_name_id["conv"] = 0
    conv2d_name = "conv" + str(mapper.dygraph_name_id["conv"])
S
SunAhong1993 已提交
767 768 769 770 771
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [conv2d_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
772 773
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
774
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
775
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
776
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
777
    # 获取当前节点输入的list
S
SunAhong1993 已提交
778 779 780 781
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[conv2d_name + ".weight"] = weights
S
SunAhong1993 已提交
782 783
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
S
SunAhong1993 已提交
784 785 786
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
787 788 789 790
        if bias is not None:
            mapper.paddle_params[conv2d_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
791
    else:
S
SunAhong1993 已提交
792
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
793 794 795 796 797 798 799 800
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
801
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
802

S
SunAhong1993 已提交
803
    graph.add_layer(
S
SunAhong1993 已提交
804
        "paddle.nn.Conv2d",
S
SunAhong1993 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。

    TorchScript示例:
        %input.10 : Tensor = aten::_convolution(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
        %30 (int): 膨胀系数大小。
        %26 (int): 卷积的组数。
    """
    if "conv" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["conv"] += 1
    else:
        mapper.dygraph_name_id["conv"] = 0
    conv2d_name = "conv" + str(mapper.dygraph_name_id["conv"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [conv2d_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[conv2d_name + ".weight"] = weights
    layer_attrs["num_filters"] = weights.shape[0]
    layer_attrs["filter_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[conv2d_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['num_channels'] = weights.shape[1] * mapper.attrs[inputs_name[
        6]]

    graph.add_layer(
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
870 871 872 873
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
874 875


S
SunAhong1993 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。

    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.cos", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
def aten_cumsum(mapper, graph, node):
    """ 构造与前一个元素累加的PaddleLayer。

    TorchScript示例:
        %56 : Tensor = aten::cumsum(%mask.1, %46, %48)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %mask.1 (Tensor): 输入,需要累加的Tensor。
        %46 (int): 累加的维度。
        %48 (int/None): Tensor的类型。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%mask.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入1,即%48,代表dtype
    if mapper.attrs[inputs_name[2]] is None:
        layer_attrs["dtype"] = None
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.cumsum",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。

    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。

    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)

    return current_inputs, current_outputs


S
SunAhong1993 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。

    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

    graph.add_layer("prim.dict", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
993
def aten_dim(mapper, graph, node):
S
SunAhong1993 已提交
994 995 996 997 998 999 1000 1001
    """ 构造获取维度的PaddleLayer。

    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
1002
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1003 1004 1005
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1006 1007
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1008
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1009
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1010
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1011
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1012 1013
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1014 1015
    graph.add_layer(
        "fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1016
    graph.add_layer(
S
SunAhong1993 已提交
1017 1018
        "prim.len", inputs={"input": output_name}, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1019 1020


S
SunAhong1993 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
def aten_div_(mapper, graph, node):
    """ 构造除法的PaddleLayer。

    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。

    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1079
def aten_dropout(mapper, graph, node):
S
SunAhong1993 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1089 1090 1091 1092 1093
    if "dropout" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["dropout"] += 1
    else:
        mapper.dygraph_name_id["dropout"] = 0
    dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
S
SunAhong1993 已提交
1094 1095 1096 1097
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [dropout_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1098 1099
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1100
    # 处理输入0,即%119
S
SunAhong1993 已提交
1101
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1102 1103 1104 1105
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1106
    graph.add_layer(
S
SunAhong1993 已提交
1107
        "paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, p=0.0)
S
SunAhong1993 已提交
1108
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1109 1110


S
SunAhong1993 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
def aten_dropout_(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout_(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    if "dropout" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["dropout"] += 1
    else:
        mapper.dygraph_name_id["dropout"] = 0
    dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [dropout_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        "paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, p=0.0)
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。

    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
    if "embedding" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["embedding"] += 1
    else:
        mapper.dygraph_name_id["embedding"] = 0
    embedding_name = "embedding" + str(mapper.dygraph_name_id["embedding"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [embedding_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
    mapper.paddle_params[embedding_name + ".weight"] = weights
S
SunAhong1993 已提交
1171 1172
    #     layer_attrs["num_embeddings"] = weights.shape[0]
    #     layer_attrs["embedding_dim"] = weights.shape[1]
S
SunAhong1993 已提交
1173 1174 1175 1176 1177 1178 1179
    layer_attrs["size"] = weights.shape
    # 处理输入1,即%input_ids.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
S
SunAhong1993 已提交
1180 1181 1182 1183
    if mapper.attrs[inputs_name[2]] == -1:
        layer_attrs["padding_idx"] = None
    else:
        layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
1184
    # 处理输入4,即%46
S
SunAhong1993 已提交
1185
    #     layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1186 1187 1188
    layer_attrs["is_sparse"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
S
SunAhong1993 已提交
1189
        "paddle.fluid.dygraph.Embedding",
S
SunAhong1993 已提交
1190 1191
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1192
        **layer_attrs)
S
SunAhong1993 已提交
1193 1194 1195
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1196
def aten_eq(mapper, graph, node):
S
SunAhong1993 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205
    """ 构造判断数值是否相等的PaddleLayer。

    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1206
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1207 1208 1209
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1210 1211
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1212
    # 处理输入0,即%124
S
SunAhong1993 已提交
1213 1214
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1215 1216
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
S
SunAhong1993 已提交
1217
    # 处理输入1,即%123
S
SunAhong1993 已提交
1218 1219
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1220 1221
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
S
SunAhong1993 已提交
1222
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1223 1224 1225
    current_inputs = list(layer_inputs.values())
    graph.add_layer("prim.eq", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1226 1227


S
SunAhong1993 已提交
1228 1229
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。
S
SunAhong1993 已提交
1230 1231

    TorchScript示例:
S
SunAhong1993 已提交
1232
        %55 : Tensor = aten::tanh(%54)
S
SunAhong1993 已提交
1233
        参数含义:
S
SunAhong1993 已提交
1234 1235
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
S
SunAhong1993 已提交
1236
    """
S
SunAhong1993 已提交
1237
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1238 1239 1240
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1241 1242
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1243
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1244
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1245
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1246
    # 获取当前节点输入、输出的list
S
SunAhong1993 已提交
1247 1248
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1249
    graph.add_layer(
S
SunAhong1993 已提交
1250
        "fluid.layers.exp", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1251
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1252 1253


S
SunAhong1993 已提交
1254
def aten_expand(mapper, graph, node):
S
SunAhong1993 已提交
1255
    """ 构造对某维度进行广播的PaddleLayer。
S
SunAhong1993 已提交
1256 1257

    TorchScript示例:
S
SunAhong1993 已提交
1258
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
S
SunAhong1993 已提交
1259
        参数含义:
S
SunAhong1993 已提交
1260 1261 1262
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
S
SunAhong1993 已提交
1263
        %1567 (bool): 未使用。
S
SunAhong1993 已提交
1264 1265 1266 1267 1268 1269 1270
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1271
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1272
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1273 1274 1275
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
S
SunAhong1993 已提交
1290
    graph.add_layer(
S
SunAhong1993 已提交
1291
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1292
        outputs=[inputs_name[0] + "_if1", inputs_name[1] + "_var"])
S
SunAhong1993 已提交
1293 1294 1295 1296 1297 1298 1299 1300
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=string("int64"))
    block.add_layer(
S
SunAhong1993 已提交
1301 1302 1303 1304 1305 1306
        "fluid.layers.create_global_var",
        inputs={"shape": inputs_name[1]},
        outputs=[inputs_name[1] + "_var"],
        value=1.0,
        dtype=string("int64"),
        persistable=True)
S
SunAhong1993 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    block.add_layer(
        "fluid.layers.create_global_var",
        inputs={"shape": inputs_name[1]},
        outputs=[inputs_name[1] + "_var"],
        value=1.0,
        dtype=inputs_name[0] + "_type",
        persistable=True)
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]

S
SunAhong1993 已提交
1324 1325
    layer_inputs["target_tensor"] = inputs_name[1] + "_var"
    current_outputs.append(inputs_name[1] + "_var")
S
SunAhong1993 已提交
1326 1327
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1328
    current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
1329

S
SunAhong1993 已提交
1330 1331
    graph.add_layer(
        "fluid.layers.expand_as", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1332 1333 1334
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。

    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["target_tensor"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if1"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
        outputs=[inputs_name[1] + "_type"])
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
        "fluid.layers.expand_as", inputs=layer_inputs, outputs=layer_outputs)
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if2"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": layer_outputs[0]},
        outputs=layer_outputs,
        dtype=string("bool"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1411 1412
def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。
S
SunAhong1993 已提交
1413 1414

    TorchScript示例:
S
SunAhong1993 已提交
1415
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
S
SunAhong1993 已提交
1416
        参数含义:
S
SunAhong1993 已提交
1417 1418 1419 1420 1421 1422 1423
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
S
SunAhong1993 已提交
1424 1425 1426 1427
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1428
    layer_attrs = {}
S
SunAhong1993 已提交
1429 1430 1431
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1432
    # 处理输入0,即%49
S
SunAhong1993 已提交
1433
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1434 1435 1436 1437 1438 1439
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["num_columns"] = inputs_name[1]
S
SunAhong1993 已提交
1440 1441
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1442 1443
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]
S
SunAhong1993 已提交
1444

S
SunAhong1993 已提交
1445 1446 1447 1448 1449
    graph.add_layer(
        "fluid.layers.eye",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
1450 1451 1452
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。

    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。

    注意:目前flatten只支持第一维的flatten
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入1,即%4
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[1]],
        type='eq',
        key=mapper.attrs[inputs_name[1]],
        value=1)
    # 处理输入2,即%2
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[2]],
        type='eq',
        key=mapper.attrs[inputs_name[2]],
        value=-1)
    # 处理输入0,即%x
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.flatten",
        inputs=layer_inputs,
        outputs=layer_outputs,
        axis=1)
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。

    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.float", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。

    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floor", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。

1555 1556 1557 1558
    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
S
SunAhong1993 已提交
1559
        %num_channels.2 (-): 被除数。
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        %2 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。

    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
def aten_full_like(mapper, graph, node):
    """ 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。

    TorchScript示例:
        %159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
        参数含义:
        %159 (Tensor): 输出,全为固定值的Tensor。
        %val_if_large.3 (Tensor): 类似形状的Tensor。
        %51 (int/float/bool): 填充值。
        %50 (int): dtype。
        %62 (int): layout。
        %53 (int): device。
        %65 (bool): 是否计算梯度。
        %66 (int): 内存形式。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%val_if_large.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%50,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
    if "gelu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["gelu"] += 1
    else:
        mapper.dygraph_name_id["gelu"] = 0
    gelu_name = "gelu" + str(mapper.dygraph_name_id["gelu"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [gelu_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.GELU", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1689
def aten___getitem__(mapper, graph, node):
S
SunAhong1993 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
1699
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1700 1701 1702
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1703 1704
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1705
    # 处理输入0,即%72
S
SunAhong1993 已提交
1706
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1707 1708
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
1709
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1710
    layer_inputs["index"] = inputs_name[1]
S
SunAhong1993 已提交
1711
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1712 1713 1714 1715
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.getitem", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1716 1717


S
SunAhong1993 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.gt", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
def aten_hardtanh_(mapper, graph, node):
    """ 构造hardtanh激活的PaddleLayer。

    TorchScript示例:
        %result.9 : Tensor = aten::hardtanh_(%input.20, %67, %66)
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
1758 1759 1760 1761 1762
    if "tanh" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["tanh"] += 1
    else:
        mapper.dygraph_name_id["tanh"] = 0
    tanh_name = "tanh" + str(mapper.dygraph_name_id["tanh"])
S
SunAhong1993 已提交
1763
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1764
    layer_outputs = [tanh_name, output_name]
S
SunAhong1993 已提交
1765
    layer_inputs = {}
S
SunAhong1993 已提交
1766
    layer_attrs = {}
S
SunAhong1993 已提交
1767 1768 1769
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1770 1771 1772 1773 1774
    # 处理输入0,即%input.20
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1775
    # 处理输入1,即%67
S
SunAhong1993 已提交
1776
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
1777
    # 处理输入2,即%66
S
SunAhong1993 已提交
1778 1779
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

S
SunAhong1993 已提交
1780
    graph.add_layer(
S
SunAhong1993 已提交
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
        'paddle.nn.Hardtanh',
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_index_select(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。

    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
1807 1808
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%371
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["index"] = inputs_name[2]
S
SunAhong1993 已提交
1820 1821 1822 1823
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1824
        "prim.index_select",
S
SunAhong1993 已提交
1825
        inputs=layer_inputs,
S
SunAhong1993 已提交
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
        outputs=current_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。

    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.int", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1853 1854 1855
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.is", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.isnot", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。

    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
    if "layernorm" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["layernorm"] += 1
    else:
        mapper.dygraph_name_id["layernorm"] = 0
    layernorm_name = "layernorm" + str(mapper.dygraph_name_id["layernorm"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [layernorm_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
    mapper.paddle_params[layernorm_name + ".weight"] = weights
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
            mapper.paddle_params[layernorm_name + ".bias"] = bias
    else:
        mapper.paddle_params[layernorm_name + ".bias"] = False
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1968
def aten_le(mapper, graph, node):
S
SunAhong1993 已提交
1969 1970 1971 1972 1973
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
S
SunAhong1993 已提交
1974
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
S
SunAhong1993 已提交
1975 1976 1977
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1978
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1979 1980 1981
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1982 1983
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1984
    # 处理输入0,即%78
S
SunAhong1993 已提交
1985
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1986
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1987
    # 处理输入1,即%79
S
SunAhong1993 已提交
1988
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1989
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1990
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1991 1992 1993 1994
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.le", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1995 1996


S
SunAhong1993 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
def aten_leaky_relu_(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。

    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu_(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
        %1570 (float): 输入中的元素小于0时的斜率。
    """
    if "leaky_relu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["leaky_relu"] += 1
    else:
        mapper.dygraph_name_id["leaky_relu"] = 0
    leaky_relu_name = "leaky_relu" + str(mapper.dygraph_name_id["leaky_relu"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [leaky_relu_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2035
def aten_len(mapper, graph, node):
S
SunAhong1993 已提交
2036 2037 2038 2039 2040 2041 2042 2043
    """ 构造获取list长度的PaddleLayer。

    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
2044
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2045 2046 2047
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2048 2049
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2050
    # 处理输入0,即%72
S
SunAhong1993 已提交
2051
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2052
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
2053
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2054 2055 2056 2057
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.len", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2058 2059


S
SunAhong1993 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
def aten_log(mapper, graph, node):
    """ 构构造log的PaddleLayer。

    TorchScript示例:
        %787 : Tensor = aten::log(%786)
        参数含义:
        %787 (Tensor): 输出,取log的Tensor。
        %786 (Tensor): 需要获取log的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.log", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.lt", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
def aten_masked_fill_(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。

    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill_(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    # 处理输入1,即%scores.2
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_not"])
    graph.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
        outputs=[inputs_name[0] + "_not_mask"])
    # 处理输入2,即%46
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
        outputs=[inputs_name[2] + "_cond"])
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
        outputs=[inputs_name[2] + "_if"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
        outputs=[inputs_name[2] + "_1"])
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
        outputs=[inputs_name[2] + "_1"])
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
        "fluid.layers.elementwise_add",
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
        outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
def aten_masked_fill(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。

    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    # 处理输入1,即%scores.2
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_not"])
    graph.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
        outputs=[inputs_name[0] + "_not_mask"])
    # 处理输入2,即%46
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
        outputs=[inputs_name[2] + "_cond"])
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
        outputs=[inputs_name[2] + "_if"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
        outputs=[inputs_name[2] + "_1"])
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
        outputs=[inputs_name[2] + "_1"])
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
        "fluid.layers.elementwise_add",
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
        outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_max(mapper, graph, node):
    """ 构造获取最大值的PaddleLayer。

    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
            "paddle.maximum", inputs=layer_inputs, outputs=layer_outputs)
    else:
        pass
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2340
def aten_max_pool2d(mapper, graph, node):
S
SunAhong1993 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
2354 2355 2356 2357 2358
    if "pool" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["pool"] += 1
    else:
        mapper.dygraph_name_id["pool"] = 0
    pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
S
SunAhong1993 已提交
2359 2360 2361 2362 2363
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [pool_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2364 2365
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2366
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
2367
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2368
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
2369
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
    layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%23
    layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%21
    layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[4]],
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
    layer_attrs["pool_type"] = string("max")

S
SunAhong1993 已提交
2389
    graph.add_layer(
S
SunAhong1993 已提交
2390
        "paddle.nn.Pool2D",
S
SunAhong1993 已提交
2391 2392 2393 2394
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2395 2396 2397


def aten_matmul(mapper, graph, node):
S
SunAhong1993 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406
    """ 构造矩阵相乘的PaddleLayer。

    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
2407
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2408 2409 2410
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2411 2412
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2413
    # 处理输入0,即%101
S
SunAhong1993 已提交
2414
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2415 2416
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
2417
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
2418
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
2419
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2420 2421
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2422
    graph.add_layer("paddle.matmul", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2423
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2424 2425


S
SunAhong1993 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
def aten_min(mapper, graph, node):
    """ 构造获取最小值的PaddleLayer。

    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
            "paddle.minimum", inputs=layer_inputs, outputs=layer_outputs)
    else:
        pass
    return current_inputs, current_outputs


2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。

    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
        layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["dim"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keep_dim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["keep_dim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "fluid.layers.reduce_mean",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。

    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

    graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
def aten_mul_(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。

    TorchScript示例:
        %size_prods.39 : int = aten::mul_(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

    graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。

    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.ne", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。

    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.neg", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。

    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.not", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
def aten_ones(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。

    TorchScript示例:
        %input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.ones",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。

    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "fluid.layers.transpose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。

    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["factor"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["factor"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "fluid.layers.pow",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2776 2777 2778 2779 2780
    if "relu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["relu"] += 1
    else:
        mapper.dygraph_name_id["relu"] = 0
    relu_name = "relu" + str(mapper.dygraph_name_id["relu"])
S
SunAhong1993 已提交
2781
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2782
    layer_outputs = [relu_name, output_name]
S
SunAhong1993 已提交
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2794
        "paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2795 2796 2797
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2798
def aten_relu_(mapper, graph, node):
S
SunAhong1993 已提交
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu_(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2809 2810 2811 2812 2813
    if "relu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["relu"] += 1
    else:
        mapper.dygraph_name_id["relu"] = 0
    relu_name = "relu" + str(mapper.dygraph_name_id["relu"])
S
SunAhong1993 已提交
2814
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2815
    layer_outputs = [relu_name, output_name]
S
SunAhong1993 已提交
2816 2817
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2818 2819
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2820
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2821
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2822
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2823
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2824 2825
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2826
    graph.add_layer(
S
SunAhong1993 已提交
2827
        "paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2828
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2829 2830 2831


def aten_relu6(mapper, graph, node):
S
SunAhong1993 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
    """ 构造ReLU6激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2842 2843 2844 2845 2846
    if "relu6" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["relu6"] += 1
    else:
        mapper.dygraph_name_id["relu6"] = 0
    relu6_name = "relu6" + str(mapper.dygraph_name_id["relu6"])
S
SunAhong1993 已提交
2847
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2848
    layer_outputs = [relu6_name, output_name]
S
SunAhong1993 已提交
2849 2850
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2851 2852
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2853
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2854
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2855
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2856
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2857 2858
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2859
    graph.add_layer(
S
SunAhong1993 已提交
2860
        "paddle.nn.ReLU6", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2861
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2862 2863


S
SunAhong1993 已提交
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
def aten_repeat(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。

    TorchScript示例:
        701 : Tensor = aten::repeat(%699, %700)
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (list): 指定每个维度复制的次数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
2925 2926 2927 2928 2929 2930 2931 2932
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
2933

S
SunAhong1993 已提交
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if1"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=string("int32"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
S
SunAhong1993 已提交
2961
    graph.add_layer(
2962 2963 2964 2965
        "fluid.layers.reshape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if2"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": layer_outputs[0]},
        outputs=layer_outputs,
        dtype=string("bool"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
2980 2981 2982
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。

    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.rsub", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。

    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。

    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
            "prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。

    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
        outputs=current_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。

    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.set_item", inputs=layer_inputs, outputs=[])
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。

    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.sigmoid", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。

    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.sin", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3169
def aten_size(mapper, graph, node):
S
SunAhong1993 已提交
3170 3171 3172
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
S
SunAhong1993 已提交
3173
        %73 : int[] = aten::size(%x.12, %10)
S
SunAhong1993 已提交
3174 3175 3176
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
S
SunAhong1993 已提交
3177
        %10 (int): 非必须,代表维度。
S
SunAhong1993 已提交
3178
    """
S
SunAhong1993 已提交
3179
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3180 3181
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
3182
    layer_attrs = {}
S
SunAhong1993 已提交
3183
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
3184 3185
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
3186
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
3187
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
3188
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
3189
    # 获取当前节点输入的list
S
SunAhong1993 已提交
3190
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
            **layer_attrs)
        return current_inputs, current_outputs
S
SunAhong1993 已提交
3206

S
SunAhong1993 已提交
3207 3208
    graph.add_layer(
        "fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
3209
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3210 3211 3212


def aten_slice(mapper, graph, node):
S
SunAhong1993 已提交
3213
    """ 构造切分list或Variable的PaddleLayer。
S
SunAhong1993 已提交
3214 3215

    TorchScript示例:
S
SunAhong1993 已提交
3216
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
S
SunAhong1993 已提交
3217
        参数含义:
S
SunAhong1993 已提交
3218 3219
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
S
SunAhong1993 已提交
3220
        %_81 (int): 切分的维度,不一定存在。
S
SunAhong1993 已提交
3221 3222 3223 3224
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
3225
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3226 3227 3228
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
3229 3230
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["input"] = inputs_name[0]

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
                outputs=[inputs_name[1] + "_list"])
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
S
SunAhong1993 已提交
3257
        # 处理输入2,即%82
S
SunAhong1993 已提交
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
                outputs=[inputs_name[2] + "_list"])
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
3281
                input0=mapper.attrs[inputs_name[3]])
S
SunAhong1993 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
                outputs=[inputs_name[3] + "_list"])
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
                outputs=[inputs_name[4] + "_list"])
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
            "fluid.layers.strided_slice",
            inputs=layer_inputs,
            outputs=layer_outputs)
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs)
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
            "prim.slice", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。

    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
    if "softmax" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["softmax"] += 1
    else:
        mapper.dygraph_name_id["softmax"] = 0
    softmax_name = "softmax" + str(mapper.dygraph_name_id["softmax"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [softmax_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
3365
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。

    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
    if "softplus" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["softplus"] += 1
    else:
        mapper.dygraph_name_id["softplus"] = 0
    softplus_name = "softplus" + str(mapper.dygraph_name_id["softplus"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [softplus_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3405 3406
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
3407 3408
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3409

S
SunAhong1993 已提交
3410 3411 3412 3413 3414
    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
3415 3416 3417
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
def aten_sqrt(mapper, graph, node):
    """ 构构造sqrt的PaddleLayer。

    TorchScript示例:
        %787 : Tensor = aten::sqrt(%786)
        参数含义:
        %787 (Tensor): 输出,取sqrt的Tensor。
        %786 (Tensor): 需要获取sqrt的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.sqrt", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
def aten_squeeze(mapper, graph, node):
    """ 构造删除位数为1的维度的PaddleLayer。

    TorchScript示例:
        %12 : Tensor = aten::squeeze(%start_logits.1, %4)
        参数含义:
        %12 (Tensor): 输出,删除维度后的Tensor。
        %start_logits.1 (Tensor): 需要删除维度的Tensor。
        %4 (int): 维度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%start_logits.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.tensor.squeeze",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。

    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
    mapper._check_input(
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.sub", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
3547
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3548 3549 3550


def aten_t(mapper, graph, node):
S
SunAhong1993 已提交
3551 3552 3553
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
S
SunAhong1993 已提交
3554
        %840 : int = aten::sub(%839, %836)
S
SunAhong1993 已提交
3555 3556 3557 3558
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
3559
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3560 3561 3562
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
3563 3564
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
3565
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
3566
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
3567
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3568
    # 获取当前节点输入的list
S
SunAhong1993 已提交
3569 3570
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3571 3572
    graph.add_layer(
        "fluid.layers.transpose",
S
SunAhong1993 已提交
3573 3574
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3575
        perm=[1, 0])
S
SunAhong1993 已提交
3576
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3577 3578


S
SunAhong1993 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。

    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
    if "tanh" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["tanh"] += 1
    else:
        mapper.dygraph_name_id["tanh"] = 0
    tanh_name = "tanh" + str(mapper.dygraph_name_id["tanh"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [tanh_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Tanh", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。

    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
        %723 (int): 轴。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入2,即%723
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["dim"] = inputs_name[2]
    # 处理输入1,即%135
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
S
SunAhong1993 已提交
3640
        layer_attrs["num_or_sections"] = 1
S
SunAhong1993 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    dim1 = inputs_name[1]
    # 处理输入2,即%705
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    graph.add_layer(
S
SunAhong1993 已提交
3682
        "fluid.layers.shape",
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
        inputs={"input": inputs_name[0]},
        outputs=[output_name + "_shape"])
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
        outputs=[output_name + "_len"])
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
        outputs=[output_name + "_list"])
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
S
SunAhong1993 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
        outputs=[dim1 + "_new"])
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
        outputs=[dim2 + "_new"])
3708 3709
    graph.add_layer(
        "prim.replaceitem",
S
SunAhong1993 已提交
3710 3711 3712 3713 3714
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
3715 3716 3717
        outputs=[])
    graph.add_layer(
        "prim.replaceitem",
S
SunAhong1993 已提交
3718 3719 3720 3721 3722
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
3723 3724 3725 3726 3727 3728 3729 3730 3731
        outputs=[])
    graph.add_layer(
        "fluid.layers.transpose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        perm=output_name + "_list")
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。

    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
S
SunAhong1993 已提交
3755 3756 3757 3758
    if len(inputs_name) == 6:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
S
SunAhong1993 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767

    graph.add_layer(
        "fluid.layers.cast",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
def aten_type_as(mapper, graph, node):
    """ 构造转换Tensor类型的PaddleLayer。

    TorchScript示例:
        %57 : Tensor = aten::type_as(%56, %mask.1)
        参数含义:
        %57 (Tensor): 输出,改变类型后的Tensor。
        %56 (Tensor): 需要改变类型的Tensor。
        %mask.1 (Tensor): 转换成与该Tensor相一致的类型。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%56
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入0,即%mask.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
        outputs=[inputs_name[1] + "_type"])
    layer_inputs["dtype"] = inputs_name[1] + "_type"
    current_inputs.append(inputs_name[1])

    graph.add_layer(
        "fluid.layers.cast", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。

    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
3822
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3823 3824 3825 3826
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3827
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3828 3829 3830
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
S
SunAhong1993 已提交
3831
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3832 3833
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
3834
        "paddle.tensor.unsqueeze",
S
SunAhong1993 已提交
3835 3836 3837 3838 3839 3840
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。

    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
3863
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3864 3865 3866 3867
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3868
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3869 3870 3871
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
S
SunAhong1993 已提交
3872
        layer_inputs["size"] = inputs_name[1]
S
SunAhong1993 已提交
3873
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            cls="paddle.fluid.Variable")
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"])
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
        block = PaddleGraph(if_layer, graph_type="dygraph")
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]])
        if_layer.add_block(block)
        block = PaddleGraph(if_layer, graph_type="dygraph")
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
SunAhong1993 已提交
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3和4,构造assert
    list_layer_inputs = {}
    mapper._check_input(graph, inputs_node[3], inputs_name[3], current_outputs)
    list_layer_inputs["key"] = inputs_name[3]
    current_inputs.append(inputs_name[3])
    mapper._check_input(graph, inputs_node[4], inputs_name[4], current_outputs)
    list_layer_inputs["value"] = inputs_name[4]
    current_inputs.append(inputs_name[4])
    graph.add_layer(
        "prim.assert",
        inputs=list_layer_inputs,
        outputs=[output_name + "_assert"],
        type="eq")
S
SunAhong1993 已提交
3913
    layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
3914 3915
    layer_attrs["align_mode"] = 0
    graph.add_layer(
S
SunAhong1993 已提交
3916
        "paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
3917 3918 3919 3920 3921 3922
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。

    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if1"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=string("int32"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
3986 3987 3988 3989 3990
    graph.add_layer(
        "fluid.layers.reshape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if2"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": layer_outputs[0]},
        outputs=layer_outputs,
        dtype=string("bool"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
4005 4006 4007
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。

    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
4035
        layer_inputs["stacklevel"] = inputs_name[1]
S
SunAhong1993 已提交
4036 4037 4038 4039 4040 4041 4042 4043
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。

    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.where", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。

    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153


def aten_zeros_like(mapper, graph, node):
    """ 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。

    TorchScript示例:
        %782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
        参数含义:
        %782 (Tensor): 输出,全0的Tensor。
        %n.2 (Tensor): 标准Tensor。
        %655 (int): 类型dtype。
        %670 (int): layout。
        %662 (Device): 设备。
        %671 (bool): 是否计算梯度。
        %672 (memory_format): 存储类型。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.2
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%655,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs