aten.py 126.5 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.util import *
S
SunAhong1993 已提交
16
from x2paddle.core.program import PaddleGraph
S
SunAhong1993 已提交
17

S
SunAhong1993 已提交
18 19 20 21 22 23 24 25 26 27 28 29
dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}

S
SunAhong1993 已提交
30 31 32 33

def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。

S
SunAhong1993 已提交
34
    TorchScript示例:
S
SunAhong1993 已提交
35 36 37 38 39 40 41
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
42 43 44 45
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
46 47
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
48
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
49
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
50
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
51
    # 获取当前节点输入的list
S
SunAhong1993 已提交
52 53 54 55 56
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    else:
S
SunAhong1993 已提交
57 58
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
59
        layer_inputs["pool_size"] = inputs_name[1]
S
SunAhong1993 已提交
60 61 62
        current_inputs.append(inputs_name[1])
    layer_attrs["pool_type"] = string("avg")

S
SunAhong1993 已提交
63 64
    graph.add_layer(
        "fluid.layers.adaptive_pool2d",
S
SunAhong1993 已提交
65 66 67 68
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
69 70 71 72 73


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。

S
SunAhong1993 已提交
74
    TorchScript示例:
S
SunAhong1993 已提交
75 76 77 78 79 80 81 82 83 84
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
85 86 87 88
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
89 90
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
91
    # 处理输入0,即%150
S
SunAhong1993 已提交
92
    mapper._check_input(
S
SunAhong1993 已提交
93
        graph, inputs_node[0], inputs_name[0], current_outputs, add_dim=True)
S
SunAhong1993 已提交
94 95
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
96
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
97 98
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
99
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
S
SunAhong1993 已提交
100
    layer_inputs["y"] = inputs_name[2]
S
SunAhong1993 已提交
101
    # 获取当前节点输入的list
S
SunAhong1993 已提交
102 103 104 105 106
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
S
SunAhong1993 已提交
107 108
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs)
109
        layer_inputs["beta"] = inputs_name[3]
S
SunAhong1993 已提交
110 111 112 113 114
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
S
SunAhong1993 已提交
115 116
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
                            current_outputs)
117
        layer_inputs["alpha"] = inputs_name[4]
S
SunAhong1993 已提交
118 119
        current_inputs.append(inputs_name[4])

S
SunAhong1993 已提交
120
    graph.add_layer(
S
SunAhong1993 已提交
121
        "paddle.addmm",
S
SunAhong1993 已提交
122 123 124 125
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
126 127


S
SunAhong1993 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + y。

    TorchScript示例:
        %296 : int = aten::add(%i.12, %288)
        参数含义:
        %296 (-): 相加结果。
        %i.12 (-): 输入数值 x。
        %288 (-): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.add", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
158
def aten_add_(mapper, graph, node):
S
SunAhong1993 已提交
159
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
S
SunAhong1993 已提交
160

S
SunAhong1993 已提交
161
    TorchScript示例:
S
SunAhong1993 已提交
162
        %137 : Tensor = aten::add(%136, %130, %130)
S
SunAhong1993 已提交
163 164 165 166 167 168 169
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
170 171 172 173
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
174 175
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
176
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
177
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
178 179 180
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
    mapper._check_input(
S
SunAhong1993 已提交
181
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
S
SunAhong1993 已提交
182
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
183
    # 获取当前节点输入的list
S
SunAhong1993 已提交
184 185 186 187 188
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%151
    if inputs_name[2] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
    else:
S
SunAhong1993 已提交
189 190
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
191
        layer_inputs["alpha"] = inputs_name[2]
S
SunAhong1993 已提交
192 193 194
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
195
        "prim.add_", inputs=layer_inputs, outputs=layer_outputs, **layer_attrs)
S
SunAhong1993 已提交
196
    return current_inputs, current_outputs
S
SunAhong1993 已提交
197 198


S
SunAhong1993 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。

    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
219
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
220 221 222 223 224 225 226 227
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.and", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
228
def aten_append(mapper, graph, node):
S
SunAhong1993 已提交
229 230 231 232 233 234 235 236 237 238 239
    """ 构造对list进行append的PaddleLayer。

    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
240
    layer_outputs = [inputs_name[0]]
S
SunAhong1993 已提交
241
    # 获取当前节点输出的list
S
SunAhong1993 已提交
242
    current_outputs = [inputs_name[0]]
S
SunAhong1993 已提交
243
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
244
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
245 246
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
247
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
248
    layer_inputs["element"] = inputs_name[1]
S
SunAhong1993 已提交
249
    # 获取当前节点输入的list
S
SunAhong1993 已提交
250 251 252 253
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.append", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
254 255


S
SunAhong1993 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。

    TorchScript示例:
        有三种情况,分别处理。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
                                current_outputs)
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
                                current_outputs)
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
                                current_outputs)
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs)
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    if "pool" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["pool"] += 1
    else:
        mapper.dygraph_name_id["pool"] = 0
    pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [pool_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
    layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%539
    layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%540
    layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6]],
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
    layer_attrs["pool_type"] = string("avg")

    graph.add_layer(
S
SunAhong1993 已提交
398
        "paddle.nn.Pool2D",
S
SunAhong1993 已提交
399 400 401 402 403 404
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。

    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
    if "batchnorm" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["batchnorm"] += 1
    else:
        mapper.dygraph_name_id["batchnorm"] = 0
    batchnorm_name = "batchnorm" + str(mapper.dygraph_name_id["batchnorm"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [batchnorm_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[batchnorm_name + ".weight"] = weights
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[batchnorm_name + ".bias"] = bias
    else:
        mapper.paddle_params[batchnorm_name + ".bias"] = False
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
    mapper.paddle_params[batchnorm_name + "._mean"] = mean
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
    mapper.paddle_params[batchnorm_name + "._variance"] = var
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
S
SunAhong1993 已提交
464
        "paddle.nn.BatchNorm",
S
SunAhong1993 已提交
465 466 467 468 469 470
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
499
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
500 501 502 503 504 505 506 507 508
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "fluid.layers.concat",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。

    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
        layer_attrs["dim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["dim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    graph.add_layer(
        "fluid.layers.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。

    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.contain", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。

    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
614
def aten_conv2d(mapper, graph, node):
S
SunAhong1993 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628
    """ 构造conv2d的PaddleLayer。

    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
        %30 (int): 膨胀系数大小。
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
629 630 631 632 633
    if "conv" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["conv"] += 1
    else:
        mapper.dygraph_name_id["conv"] = 0
    conv2d_name = "conv" + str(mapper.dygraph_name_id["conv"])
S
SunAhong1993 已提交
634 635 636 637 638
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [conv2d_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
639 640
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
641
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
642
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
643
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
644
    # 获取当前节点输入的list
S
SunAhong1993 已提交
645 646 647 648
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[conv2d_name + ".weight"] = weights
S
SunAhong1993 已提交
649 650
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
S
SunAhong1993 已提交
651 652 653
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
654 655 656 657
        if bias is not None:
            mapper.paddle_params[conv2d_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
658
    else:
S
SunAhong1993 已提交
659
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
660 661 662 663 664 665 666 667
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
668
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
669

S
SunAhong1993 已提交
670
    graph.add_layer(
S
SunAhong1993 已提交
671
        "paddle.nn.Conv2d",
S
SunAhong1993 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。

    TorchScript示例:
        %input.10 : Tensor = aten::_convolution(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
        %30 (int): 膨胀系数大小。
        %26 (int): 卷积的组数。
    """
    if "conv" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["conv"] += 1
    else:
        mapper.dygraph_name_id["conv"] = 0
    conv2d_name = "conv" + str(mapper.dygraph_name_id["conv"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [conv2d_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[conv2d_name + ".weight"] = weights
    layer_attrs["num_filters"] = weights.shape[0]
    layer_attrs["filter_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[conv2d_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['num_channels'] = weights.shape[1] * mapper.attrs[inputs_name[
        6]]

    graph.add_layer(
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
737 738 739 740
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
741 742


S
SunAhong1993 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。

    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.cos", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。

    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。

    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)

    return current_inputs, current_outputs


S
SunAhong1993 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。

    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

    graph.add_layer("prim.dict", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
815
def aten_dim(mapper, graph, node):
S
SunAhong1993 已提交
816 817 818 819 820 821 822 823
    """ 构造获取维度的PaddleLayer。

    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
824
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
825 826 827
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
828 829
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
830
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
831
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
832
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
833
    # 获取当前节点输入的list
S
SunAhong1993 已提交
834 835
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
836 837
    graph.add_layer(
        "fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
838
    graph.add_layer(
S
SunAhong1993 已提交
839 840
        "prim.len", inputs={"input": output_name}, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
841 842


S
SunAhong1993 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
def aten_div_(mapper, graph, node):
    """ 构造除法的PaddleLayer。

    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。

    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.div", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
901
def aten_dropout(mapper, graph, node):
S
SunAhong1993 已提交
902 903 904 905 906 907 908 909 910
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
911 912 913 914 915
    if "dropout" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["dropout"] += 1
    else:
        mapper.dygraph_name_id["dropout"] = 0
    dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
S
SunAhong1993 已提交
916 917 918 919
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [dropout_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
920 921
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
922
    # 处理输入0,即%119
S
SunAhong1993 已提交
923
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
924 925 926 927
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
928
    graph.add_layer(
S
SunAhong1993 已提交
929
        "paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, p=0.0)
S
SunAhong1993 已提交
930
    return current_inputs, current_outputs
S
SunAhong1993 已提交
931 932


S
SunAhong1993 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
def aten_dropout_(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout_(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    if "dropout" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["dropout"] += 1
    else:
        mapper.dygraph_name_id["dropout"] = 0
    dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [dropout_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
        "paddle.nn.Dropout", inputs=layer_inputs, outputs=layer_outputs, p=0.0)
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。

    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
    if "embedding" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["embedding"] += 1
    else:
        mapper.dygraph_name_id["embedding"] = 0
    embedding_name = "embedding" + str(mapper.dygraph_name_id["embedding"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [embedding_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
    mapper.paddle_params[embedding_name + ".weight"] = weights
    layer_attrs["size"] = weights.shape
    # 处理输入1,即%input_ids.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
    layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
    # 处理输入4,即%46
    layer_attrs["is_sparse"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.Embedding",
S
SunAhong1993 已提交
1006 1007
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1008
        **layer_attrs)
S
SunAhong1993 已提交
1009 1010 1011
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1012
def aten_eq(mapper, graph, node):
S
SunAhong1993 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021
    """ 构造判断数值是否相等的PaddleLayer。

    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1022
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1023 1024 1025
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1026 1027
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1028
    # 处理输入0,即%124
S
SunAhong1993 已提交
1029 1030
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1031 1032
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
S
SunAhong1993 已提交
1033
    # 处理输入1,即%123
S
SunAhong1993 已提交
1034 1035
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1036 1037
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
S
SunAhong1993 已提交
1038
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1039 1040 1041
    current_inputs = list(layer_inputs.values())
    graph.add_layer("prim.eq", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1042 1043


S
SunAhong1993 已提交
1044 1045
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。
S
SunAhong1993 已提交
1046 1047

    TorchScript示例:
S
SunAhong1993 已提交
1048
        %55 : Tensor = aten::tanh(%54)
S
SunAhong1993 已提交
1049
        参数含义:
S
SunAhong1993 已提交
1050 1051
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
S
SunAhong1993 已提交
1052
    """
S
SunAhong1993 已提交
1053
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1054 1055 1056
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1057 1058
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1059
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1060
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1061
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1062
    # 获取当前节点输入、输出的list
S
SunAhong1993 已提交
1063 1064
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1065
    graph.add_layer(
S
SunAhong1993 已提交
1066
        "fluid.layers.exp", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1067
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1068 1069


S
SunAhong1993 已提交
1070
def aten_expand(mapper, graph, node):
S
SunAhong1993 已提交
1071
    """ 构造对某维度进行广播的PaddleLayer。
S
SunAhong1993 已提交
1072 1073

    TorchScript示例:
S
SunAhong1993 已提交
1074
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
S
SunAhong1993 已提交
1075
        参数含义:
S
SunAhong1993 已提交
1076 1077 1078
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
S
SunAhong1993 已提交
1079
        %1567 (bool): 未使用。
S
SunAhong1993 已提交
1080 1081 1082 1083 1084 1085 1086
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1087
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1088
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1089 1090 1091
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
S
SunAhong1993 已提交
1106
    graph.add_layer(
S
SunAhong1993 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if1"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=string("int64"))
    block.add_layer(
S
SunAhong1993 已提交
1117 1118 1119 1120 1121 1122
        "fluid.layers.create_global_var",
        inputs={"shape": inputs_name[1]},
        outputs=[inputs_name[1] + "_var"],
        value=1.0,
        dtype=string("int64"),
        persistable=True)
S
SunAhong1993 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    block.add_layer(
        "fluid.layers.create_global_var",
        inputs={"shape": inputs_name[1]},
        outputs=[inputs_name[1] + "_var"],
        value=1.0,
        dtype=inputs_name[0] + "_type",
        persistable=True)
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]

S
SunAhong1993 已提交
1140 1141
    layer_inputs["target_tensor"] = inputs_name[1] + "_var"
    current_outputs.append(inputs_name[1] + "_var")
S
SunAhong1993 已提交
1142 1143
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1144
    current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
1145

S
SunAhong1993 已提交
1146 1147
    graph.add_layer(
        "fluid.layers.expand_as", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1148 1149 1150
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。

    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["target_tensor"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if1"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
        outputs=[inputs_name[1] + "_type"])
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
        "fluid.layers.expand_as", inputs=layer_inputs, outputs=layer_outputs)
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if2"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": layer_outputs[0]},
        outputs=layer_outputs,
        dtype=string("bool"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1227 1228
def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。
S
SunAhong1993 已提交
1229 1230

    TorchScript示例:
S
SunAhong1993 已提交
1231
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
S
SunAhong1993 已提交
1232
        参数含义:
S
SunAhong1993 已提交
1233 1234 1235 1236 1237 1238 1239
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
S
SunAhong1993 已提交
1240 1241 1242 1243
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1244
    layer_attrs = {}
S
SunAhong1993 已提交
1245 1246 1247
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1248
    # 处理输入0,即%49
S
SunAhong1993 已提交
1249
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1250 1251 1252 1253 1254 1255
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["num_columns"] = inputs_name[1]
S
SunAhong1993 已提交
1256 1257
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1258 1259
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]
S
SunAhong1993 已提交
1260

S
SunAhong1993 已提交
1261 1262 1263 1264 1265
    graph.add_layer(
        "fluid.layers.eye",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
1266 1267 1268
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。

    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。

    注意:目前flatten只支持第一维的flatten
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入1,即%4
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[1]],
        type='eq',
        key=mapper.attrs[inputs_name[1]],
        value=1)
    # 处理输入2,即%2
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[2]],
        type='eq',
        key=mapper.attrs[inputs_name[2]],
        value=-1)
    # 处理输入0,即%x
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.flatten",
        inputs=layer_inputs,
        outputs=layer_outputs,
        axis=1)
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。

    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.float", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。

    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floor", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。

1371 1372 1373 1374
    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
S
SunAhong1993 已提交
1375
        %num_channels.2 (-): 被除数。
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        %2 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。

    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
    if "gelu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["gelu"] += 1
    else:
        mapper.dygraph_name_id["gelu"] = 0
    gelu_name = "gelu" + str(mapper.dygraph_name_id["gelu"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [gelu_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.GELU", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1459
def aten___getitem__(mapper, graph, node):
S
SunAhong1993 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
1469
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1470 1471 1472
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1473 1474
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1475
    # 处理输入0,即%72
S
SunAhong1993 已提交
1476
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1477 1478
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
1479
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1480
    layer_inputs["index"] = inputs_name[1]
S
SunAhong1993 已提交
1481
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1482 1483 1484 1485
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.getitem", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1486 1487


S
SunAhong1993 已提交
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.gt", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
def aten_hardtanh_(mapper, graph, node):
    """ 构造hardtanh激活的PaddleLayer。

    TorchScript示例:
        %result.9 : Tensor = aten::hardtanh_(%input.20, %67, %66)
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
1528 1529 1530 1531 1532
    if "tanh" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["tanh"] += 1
    else:
        mapper.dygraph_name_id["tanh"] = 0
    tanh_name = "tanh" + str(mapper.dygraph_name_id["tanh"])
S
SunAhong1993 已提交
1533
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1534
    layer_outputs = [tanh_name, output_name]
S
SunAhong1993 已提交
1535
    layer_inputs = {}
S
SunAhong1993 已提交
1536
    layer_attrs = {}
S
SunAhong1993 已提交
1537 1538 1539
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1540 1541 1542 1543 1544
    # 处理输入0,即%input.20
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1545
    # 处理输入1,即%67
S
SunAhong1993 已提交
1546
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
1547
    # 处理输入2,即%66
S
SunAhong1993 已提交
1548 1549
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

S
SunAhong1993 已提交
1550
    graph.add_layer(
S
SunAhong1993 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
        'paddle.nn.Hardtanh',
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_index_select(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。

    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
1577 1578
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%371
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["index"] = inputs_name[2]
S
SunAhong1993 已提交
1590 1591 1592 1593
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1594
        "prim.index_select",
S
SunAhong1993 已提交
1595
        inputs=layer_inputs,
S
SunAhong1993 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
        outputs=current_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。

    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.int", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1623 1624 1625
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.is", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.isnot", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。

    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
    if "layernorm" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["layernorm"] += 1
    else:
        mapper.dygraph_name_id["layernorm"] = 0
    layernorm_name = "layernorm" + str(mapper.dygraph_name_id["layernorm"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [layernorm_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
    mapper.paddle_params[layernorm_name + ".weight"] = weights
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
            mapper.paddle_params[layernorm_name + ".bias"] = bias
    else:
        mapper.paddle_params[layernorm_name + ".bias"] = False
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1738
def aten_le(mapper, graph, node):
S
SunAhong1993 已提交
1739 1740 1741 1742 1743
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
S
SunAhong1993 已提交
1744
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
S
SunAhong1993 已提交
1745 1746 1747
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1748
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1749 1750 1751
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1752 1753
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1754
    # 处理输入0,即%78
S
SunAhong1993 已提交
1755
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1756
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1757
    # 处理输入1,即%79
S
SunAhong1993 已提交
1758
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1759
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1760
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1761 1762 1763 1764
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.le", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1765 1766


S
SunAhong1993 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
def aten_leaky_relu_(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。

    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu_(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
        %1570 (float): 输入中的元素小于0时的斜率。
    """
    if "leaky_relu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["leaky_relu"] += 1
    else:
        mapper.dygraph_name_id["leaky_relu"] = 0
    leaky_relu_name = "leaky_relu" + str(mapper.dygraph_name_id["leaky_relu"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [leaky_relu_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1805
def aten_len(mapper, graph, node):
S
SunAhong1993 已提交
1806 1807 1808 1809 1810 1811 1812 1813
    """ 构造获取list长度的PaddleLayer。

    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
1814
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1815 1816 1817
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1818 1819
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1820
    # 处理输入0,即%72
S
SunAhong1993 已提交
1821
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1822
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1823
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1824 1825 1826 1827
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.len", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1828 1829


S
SunAhong1993 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.lt", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
def aten_masked_fill_(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。

    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill_(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    # 处理输入1,即%scores.2
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_not"])
    graph.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
        outputs=[inputs_name[0] + "_not_mask"])
    # 处理输入2,即%46
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
        outputs=[inputs_name[2] + "_cond"])
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
        outputs=[inputs_name[2] + "_if"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
        outputs=[inputs_name[2] + "_1"])
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
        outputs=[inputs_name[2] + "_1"])
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
        "fluid.layers.elementwise_add",
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
        outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1954
def aten_max_pool2d(mapper, graph, node):
S
SunAhong1993 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
1968 1969 1970 1971 1972
    if "pool" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["pool"] += 1
    else:
        mapper.dygraph_name_id["pool"] = 0
    pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
S
SunAhong1993 已提交
1973 1974 1975 1976 1977
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [pool_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1978 1979
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1980
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
1981
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1982
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1983
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
    layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%23
    layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%21
    layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[4]],
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
    layer_attrs["pool_type"] = string("max")

S
SunAhong1993 已提交
2003
    graph.add_layer(
S
SunAhong1993 已提交
2004
        "paddle.nn.Pool2D",
S
SunAhong1993 已提交
2005 2006 2007 2008
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2009 2010 2011


def aten_matmul(mapper, graph, node):
S
SunAhong1993 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020
    """ 构造矩阵相乘的PaddleLayer。

    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
2021
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2022 2023 2024
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2025 2026
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2027
    # 处理输入0,即%101
S
SunAhong1993 已提交
2028
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2029 2030
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
2031
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
2032
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
2033
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2034 2035
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2036
    graph.add_layer("paddle.matmul", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2037
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2038 2039


2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。

    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
        layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["dim"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keep_dim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["keep_dim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "fluid.layers.reduce_mean",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。

    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

    graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。

    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.ne", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。

    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.neg", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。

    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.not", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。

    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "fluid.layers.transpose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。

    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["factor"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["factor"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "fluid.layers.pow",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2285 2286 2287 2288 2289
    if "relu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["relu"] += 1
    else:
        mapper.dygraph_name_id["relu"] = 0
    relu_name = "relu" + str(mapper.dygraph_name_id["relu"])
S
SunAhong1993 已提交
2290
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2291
    layer_outputs = [relu_name, output_name]
S
SunAhong1993 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2303
        "paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2304 2305 2306
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2307
def aten_relu_(mapper, graph, node):
S
SunAhong1993 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu_(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2318 2319 2320 2321 2322
    if "relu" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["relu"] += 1
    else:
        mapper.dygraph_name_id["relu"] = 0
    relu_name = "relu" + str(mapper.dygraph_name_id["relu"])
S
SunAhong1993 已提交
2323
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2324
    layer_outputs = [relu_name, output_name]
S
SunAhong1993 已提交
2325 2326
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2327 2328
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2329
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2330
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2331
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2332
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2333 2334
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2335
    graph.add_layer(
S
SunAhong1993 已提交
2336
        "paddle.nn.ReLU", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2337
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2338 2339 2340


def aten_relu6(mapper, graph, node):
S
SunAhong1993 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
    """ 构造ReLU6激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2351 2352 2353 2354 2355
    if "relu6" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["relu6"] += 1
    else:
        mapper.dygraph_name_id["relu6"] = 0
    relu6_name = "relu6" + str(mapper.dygraph_name_id["relu6"])
S
SunAhong1993 已提交
2356
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2357
    layer_outputs = [relu6_name, output_name]
S
SunAhong1993 已提交
2358 2359
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2360 2361
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2362
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2363
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2364
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2365
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2366 2367
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2368
    graph.add_layer(
S
SunAhong1993 已提交
2369
        "paddle.nn.ReLU6", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2370
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2371 2372


S
SunAhong1993 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
2395 2396 2397 2398 2399 2400 2401 2402
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
2403

S
SunAhong1993 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if1"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=string("int32"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
S
SunAhong1993 已提交
2431
    graph.add_layer(
2432 2433 2434 2435
        "fluid.layers.reshape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if2"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": layer_outputs[0]},
        outputs=layer_outputs,
        dtype=string("bool"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
2450 2451 2452
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。

    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.rsub", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。

    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。

    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
            "prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。

    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
        outputs=current_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。

    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.set_item", inputs=layer_inputs, outputs=[])
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。

    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.sigmoid", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。

    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.sin", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2639
def aten_size(mapper, graph, node):
S
SunAhong1993 已提交
2640 2641 2642
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
S
SunAhong1993 已提交
2643
        %73 : int[] = aten::size(%x.12, %10)
S
SunAhong1993 已提交
2644 2645 2646
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
S
SunAhong1993 已提交
2647
        %10 (int): 非必须,代表维度。
S
SunAhong1993 已提交
2648
    """
S
SunAhong1993 已提交
2649
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2650 2651
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
2652
    layer_attrs = {}
S
SunAhong1993 已提交
2653
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2654 2655
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2656
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
2657
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2658
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
2659
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2660
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
            **layer_attrs)
        return current_inputs, current_outputs
S
SunAhong1993 已提交
2676

S
SunAhong1993 已提交
2677 2678
    graph.add_layer(
        "fluid.layers.shape", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2679
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2680 2681 2682


def aten_slice(mapper, graph, node):
S
SunAhong1993 已提交
2683
    """ 构造切分list或Variable的PaddleLayer。
S
SunAhong1993 已提交
2684 2685

    TorchScript示例:
S
SunAhong1993 已提交
2686
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
S
SunAhong1993 已提交
2687
        参数含义:
S
SunAhong1993 已提交
2688 2689
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
S
SunAhong1993 已提交
2690
        %_81 (int): 切分的维度,不一定存在。
S
SunAhong1993 已提交
2691 2692 2693 2694
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
2695
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2696 2697 2698
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2699 2700
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["input"] = inputs_name[0]

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
                outputs=[inputs_name[1] + "_list"])
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
S
SunAhong1993 已提交
2727
        # 处理输入2,即%82
S
SunAhong1993 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
                outputs=[inputs_name[2] + "_list"])
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
2751
                input0=mapper.attrs[inputs_name[3]])
S
SunAhong1993 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
                outputs=[inputs_name[3] + "_list"])
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
                                current_outputs)
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
                outputs=[inputs_name[4] + "_list"])
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
            "fluid.layers.strided_slice",
            inputs=layer_inputs,
            outputs=layer_outputs)
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs)
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
            "prim.slice", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。

    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
    if "softmax" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["softmax"] += 1
    else:
        mapper.dygraph_name_id["softmax"] = 0
    softmax_name = "softmax" + str(mapper.dygraph_name_id["softmax"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [softmax_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
2835
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。

    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
    if "softplus" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["softplus"] += 1
    else:
        mapper.dygraph_name_id["softplus"] = 0
    softplus_name = "softplus" + str(mapper.dygraph_name_id["softplus"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [softplus_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2875 2876
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2877 2878
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
2879

S
SunAhong1993 已提交
2880 2881 2882 2883 2884
    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。

    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
    mapper._check_input(
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.sub", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
2915
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2916 2917 2918


def aten_t(mapper, graph, node):
S
SunAhong1993 已提交
2919 2920 2921
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
S
SunAhong1993 已提交
2922
        %840 : int = aten::sub(%839, %836)
S
SunAhong1993 已提交
2923 2924 2925 2926
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
2927
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2928 2929 2930
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
2931 2932
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
2933
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
2934
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
2935
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2936
    # 获取当前节点输入的list
S
SunAhong1993 已提交
2937 2938
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2939 2940
    graph.add_layer(
        "fluid.layers.transpose",
S
SunAhong1993 已提交
2941 2942
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2943
        perm=[1, 0])
S
SunAhong1993 已提交
2944
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2945 2946


S
SunAhong1993 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。

    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
    if "tanh" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["tanh"] += 1
    else:
        mapper.dygraph_name_id["tanh"] = 0
    tanh_name = "tanh" + str(mapper.dygraph_name_id["tanh"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [tanh_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.Tanh", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。

    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
        %723 (int): 轴。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入2,即%723
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["dim"] = inputs_name[2]
    # 处理输入1,即%135
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
S
SunAhong1993 已提交
3008
        layer_attrs["num_or_sections"] = 1
S
SunAhong1993 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    dim1 = inputs_name[1]
    # 处理输入2,即%705
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    graph.add_layer(
S
SunAhong1993 已提交
3088
        "fluid.layers.shape",
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
        inputs={"input": inputs_name[0]},
        outputs=[output_name + "_shape"])
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
        outputs=[output_name + "_len"])
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
        outputs=[output_name + "_list"])
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
S
SunAhong1993 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
        outputs=[dim1 + "_new"])
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
        outputs=[dim2 + "_new"])
3114 3115
    graph.add_layer(
        "prim.replaceitem",
S
SunAhong1993 已提交
3116 3117 3118 3119 3120
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
3121 3122 3123
        outputs=[])
    graph.add_layer(
        "prim.replaceitem",
S
SunAhong1993 已提交
3124 3125 3126 3127 3128
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
3129 3130 3131 3132 3133 3134 3135 3136 3137
        outputs=[])
    graph.add_layer(
        "fluid.layers.transpose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        perm=output_name + "_list")
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。

    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    assert len(inputs_name) == 5, "Paddle only support converting the dtype!"
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "fluid.layers.cast",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。

    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
3191
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3192 3193 3194 3195
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3196
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3197 3198 3199
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
S
SunAhong1993 已提交
3200
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3201 3202
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
3203
        "paddle.tensor.unsqueeze",
S
SunAhong1993 已提交
3204 3205 3206 3207 3208 3209
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。

    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
3232
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3233 3234 3235 3236
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3237
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3238 3239 3240
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
S
SunAhong1993 已提交
3241
        layer_inputs["size"] = inputs_name[1]
S
SunAhong1993 已提交
3242
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            cls="paddle.fluid.Variable")
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"])
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
        block = PaddleGraph(if_layer, graph_type="dygraph")
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]])
        if_layer.add_block(block)
        block = PaddleGraph(if_layer, graph_type="dygraph")
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
SunAhong1993 已提交
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3和4,构造assert
    list_layer_inputs = {}
    mapper._check_input(graph, inputs_node[3], inputs_name[3], current_outputs)
    list_layer_inputs["key"] = inputs_name[3]
    current_inputs.append(inputs_name[3])
    mapper._check_input(graph, inputs_node[4], inputs_name[4], current_outputs)
    list_layer_inputs["value"] = inputs_name[4]
    current_inputs.append(inputs_name[4])
    graph.add_layer(
        "prim.assert",
        inputs=list_layer_inputs,
        outputs=[output_name + "_assert"],
        type="eq")
S
SunAhong1993 已提交
3282
    layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
3283 3284
    layer_attrs["align_mode"] = 0
    graph.add_layer(
S
SunAhong1993 已提交
3285
        "paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
3286 3287 3288 3289 3290 3291
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。

    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_type"])
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if1"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
        dtype=string("int32"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
3355 3356 3357 3358 3359
    graph.add_layer(
        "fluid.layers.reshape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
        outputs=[inputs_name[0] + "_if2"])
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
    block = PaddleGraph(if_layer, graph_type="dygraph")
    block.add_layer(
        "fluid.layers.cast",
        inputs={"x": layer_outputs[0]},
        outputs=layer_outputs,
        dtype=string("bool"))
    if_layer.add_block(block)
    block = PaddleGraph(if_layer, graph_type="dygraph")
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
3374 3375 3376
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。

    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
3404
        layer_inputs["stacklevel"] = inputs_name[1]
S
SunAhong1993 已提交
3405 3406 3407 3408 3409 3410 3411 3412
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。

    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("paddle.where", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。

    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs