caffe_shape.py 14.0 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math


def get_params_w_h(params):
    if hasattr(params, 'dilation'):
        if len(params.dilation) == 0:
            dila_h = 1
            dila_w = 1
        elif len(params.dilation) == 1:
            dila_h = params.dilation[0]
            dila_w = params.dilation[0]
        else:
            dila_h = params.dilation[0]
            dila_w = params.dilation[1]
    else:
        dila_h = 1
        dila_w = 1

    if not isinstance(getattr(params, 'pad'), int):
        if len(params.pad) == 0:
S
SunAhong1993 已提交
35 36
            pad_h = 0
            pad_w = 0
S
SunAhong1993 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        elif len(params.pad) == 1:
            pad_h = params.pad[0]
            pad_w = params.pad[0]
        else:
            pad_h, pad_w, = params.pad[0]
            pad_w = params.pad[1]
        if params.pad_h != 0 or params.pad_w != 0:
            pad_h = params.pad_h
            pad_w = params.pad_w
    else:
        if params.pad_h != 0 or params.pad_w != 0:
            pad_h = params.pad_h
            pad_w = params.pad_w
        else:
            pad_h = getattr(params, 'pad')
            pad_w = getattr(params, 'pad')

    if not isinstance(getattr(params, 'kernel_size'), int):
        if len(params.kernel_size) == 0:
            kernel_h = 1
            kernel_w = 1
        elif len(params.kernel_size) == 1:
            kernel_h = params.kernel_size[0]
            kernel_w = params.kernel_size[0]
        else:
            kernel_h = params.kernel_size[0]
            kernel_w = params.kernel_size[1]
        if params.kernel_h != 0 or params.kernel_w != 0:
            kernel_h = params.kernel_h
            kernel_w = params.kernel_w
    else:
        if params.kernel_h != 0 or params.kernel_w != 0:
            kernel_h = params.kernel_h
            kernel_w = params.kernel_w
        else:
            kernel_h = getattr(params, 'kernel_size')
            kernel_w = getattr(params, 'kernel_size')
    if not isinstance(getattr(params, 'stride'), int):
        if len(params.stride) == 0:
            stride_h = 1
            stride_w = 1
        elif len(params.stride) == 1:
            stride_h = params.stride[0]
            stride_w = params.stride[0]
        else:
            stride_h = params.stride[0]
            stride_w = params.stride[1]
        if params.stride_h != 0 or params.stride_w != 0:
            stride_h = params.stride_h
            stride_w = params.stride_w
    else:
        if params.stride_h != 0 or params.stride_w != 0:
            stride_h = params.stride_h
            stride_w = params.stride_w
        else:
            stride_h = getattr(params, 'stride')
            stride_w = getattr(params, 'stride')
    return dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w


def get_filter_output_shape(i_h, i_w, params, round_func):
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_params_w_h(
        params)
    o_h = (i_h + 2 * pad_h - (dila_h *
                              (kernel_h - 1) + 1)) / float(stride_h) + 1
    o_w = (i_w + 2 * pad_w - (dila_w *
                              (kernel_w - 1) + 1)) / float(stride_w) + 1
    return (int(round_func(o_h)), int(round_func(o_w)))


def get_strided_kernel_output_shape(params, input_shape, round_func):

    o_h, o_w = get_filter_output_shape(input_shape[2], input_shape[3], params,
                                       round_func)
    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape[1]
S
SunAhong1993 已提交
113

S
SunAhong1993 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    return [[input_shape[0], c, o_h, o_w]]


def shape_convolution(layer, input_shape):
    params = layer.convolution_param
    return get_strided_kernel_output_shape(params, input_shape[0], math.floor)


def shape_deconvolution(layer, input_shape):
    h_i = input_shape[2]
    w_i = input_shape[3]

    params = layer.convolution_param
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_params_w_h(
        params)

    h_o = (h_i - 1) * stride_h - 2 * pad_h + dila_h * (kernel_h - 1) + 1
    w_o = (w_i - 1) * stride_w - 2 * pad_w + dila_w * (kernel_w - 1) + 1

    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape.channels
    return [[input_shape[0][0], c, h_o, w_o]]


def shape_pooling(layer, input_shape):
    params = layer.pooling_param
    global_pool = getattr(params, 'global_pooling', False)
    if global_pool:
        return [[input_shape[0][0], input_shape[0][1], 1, 1]]

    ceil_mode = getattr(params, 'ceil_mode', True)
    if ceil_mode is True:
        method = math.ceil
    else:
        method = math.floor
    return get_strided_kernel_output_shape(params, input_shape[0], method)


def shape_innerproduct(layer, input_shape):
    params = layer.inner_product_param
    return [[input_shape[0][0], params.num_output]]


def shape_lrn(layer, input_shape):
    return input_shape


def shape_relu(layer, input_shape):
    return input_shape


def shape_softmax(layer, input_shape):
    return input_shape


def shape_input(layer, input_shape):
    return [list(layer.input_param.shape[0].dim)]
S
SunAhong1993 已提交
171

S
SunAhong1993 已提交
172

S
SunAhong1993 已提交
173 174 175 176 177 178 179 180 181
def shape_concat(layer, input_shape):
    params = layer.concat_param
    axis = params.axis
    output_shape = None
    for shape in input_shape:
        if output_shape is None:
            output_shape = shape
        else:
            output_shape[axis] += shape[axis]
S
SunAhong1993 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    return [output_shape]


def shape_slice(layer, input_shape):
    inshape = input_shape[0]
    params = layer.slice_param
    axis = params.axis
    count = inshape[axis]
    points = list(params.slice_point)
    points = [0] + points + [count]
    output_shape = []
    for i in range(len(points)):
        shape = inshape
        size = points[i + 1] - points[i]
        shape[axis] = size
        output_shape.append(shape)
        if i == len(points) - 2:
            break
    return output_shape


def shape_prelu(layer, input_shape):
    return input_shape


def shape_sigmoid(layer, input_shape):
    return input_shape


def shape_absval(layer, input_shape):
    return input_shape


def shape_accuracy(layer, input_shape):
    return [[1]]


def shape_tanh(layer, input_shape):
    return input_shape


def shape_eltwise(layer, input_shape):
    return [input_shape[0]]


def shape_batchnorm(layer, input_shape):
    return input_shape


def shape_scale(layer, input_shape):
    return input_shape
S
SunAhong1993 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455


def shape_reshape(layer, input_shape):
    def count(num_list):
        return reduce(lambda a, b: a * b, num_list)

    inshape = input_shape[0]
    params = layer.reshape_param
    axis = params.axis if hasattr(params, axis) else 0
    num_axes = params.num_axes if hasattr(params, num_axes) else -1
    if inshape[0] == -1:
        inshape[0] = 1
    input_count = count(inshape)

    input_num_axes = len(inshape)

    input_start_axis = axis
    start_axis = input_start_axis if input_start_axis >= 0 \
            else input_num_axes + input_start_axis + 1

    assert start_axis >= 0, "[Reshape]axis %d out of range" % (input_start_axis)
    assert start_axis <= input_num_axes, "[Reshape]axis %d out of range for %d-D input data"\
            % (input_start_axis, input_num_axes)

    assert num_axes >= -1, "[Reshape]num_axes must be >= 0, or -1 for all"

    end_axis = input_num_axes if num_axes == -1 else start_axis + num_axes
    assert end_axis <= input_num_axes, "end_axis[%d] = axis[%d] + num_axes[%d] is out of range"\
            % (end_axis, start_axis, num_axes)

    num_axes_replaced = end_axis - start_axis
    num_axes_retained = input_num_axes - num_axes_replaced
    num_new_axes = len(shape['dim'])
    outshape = []

    for i in range(start_axis):
        outshape.append(inshape[i])

    for i in range(num_new_axes):
        outshape.append(shape['dim'][i])

    for i in range(end_axis, input_num_axes):
        outshape.append(inshape[i])

    assert len(outshape) == num_axes_retained + num_new_axes,\
            "[Reshape]invalid dims of output shape[%s]" % (str(outshape))

    inferred_axis = -1
    copy_axes = []
    constant_count = 1
    for i in range(num_new_axes):
        top_dim = shape['dim'][i]
        if top_dim == 0:
            copy_axes.append(i)
            copy_axis_index = start_axis + i
            outshape[copy_axis_index] = inshape[copy_axis_index]
        elif top_dim == -1:
            assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims"
            inferred_axis = i
        else:
            constant_count *= top_dim

    if inferred_axis >= 0:
        explicit_count = constant_count
        l = inshape[0:start_axis]
        if len(l) > 0:
            explicit_count *= count(l)

        l = inshape[end_axis:]
        if len(l) > 0:
            explicit_count *= count(l)

        for i in range(len(copy_axes)):
            explicit_count *= outshape[start_axis + copy_axes[i]]

        assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
                "must be divisible by product of the specified dimensions[%d] "\
                % (input_count, explicit_count)
        outshape[start_axis + inferred_axis] = input_count / explicit_count

    output_count = count(outshape)
    assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
        output_count, input_count)
    if inshape[0] == -1:
        outshape[0] = -1
    return [outshape]


def shape_argmax(layer, input_shape):
    inshape = input_shape[0]
    params = layer.argmax_param
    out_max_val = params.out_max_val if hasattr(params, out_max_val) else False
    top_k = params.top_k if hasattr(params, top_k) else 1
    axis = parmas.axis if hasattr(params, axis) else -1
    if axis < 0:
        axis += len(inshape)
    assert (axis + 1 == len(inshape)
            ), 'only can be applied on the last dimension[axis:%d, %s] now,'\
                    'make sure you have set axis param in xxx.prototxt file' \
                    % (axis, str(inshape))

    outshape = inshape
    outshape[-1] = top_k
    if out_max_val is True:
        outshape[-1] *= 2
    return [outshape]


def shape_axpy(layer, input_shape):
    assert len(input_shapes) == 3, "not valid input shape for axpy layer"
    assert len(input_shapes[0]) == len(input_shapes[1]), 'should have same dims'

    output_shape = input_shapes[1]
    assert (input_shapes[2] == output_shape),\
            "shape not consistent for axpy[%s <--> %s]" \
            % (str(output_shape), str(input_shapes[2]))
    return [output_shape]


def shape_crop(layer, input_shape):
    assert len(input_shape) == 2, "the number of crop's inputs must be 2"
    return [input_shape[1]]


def shape_detectionoutput(layer, input_shape):
    return [[-1, 6]]


def shape_flatten(layer, input_shape):
    assert len(input_shape) == 1, "the number of flatten's inputs must be 1"
    params = layer.flatten_param
    start_axis = params.axis
    end_axis = params.end_axis
    if start_axis < 0:
        start_axis += len(input_shape[0])
    if end_axis < 0:
        end_axis += len(input_shape[0]) + 1
    assert start_axis <= end_axis, 'invalid axis[%d] or end_axis[%d] params'\
            % (start_axis, end_axis)
    output_shape = [0] * (start_axis - 0) + [
        -1
    ] + [0] * (len(input_shape[0]) - end_axis)
    return [output_shape]


def shape_normalize(layer, input_shape):
    return input_shape


def shape_permute(layer, input_shape):
    params = layer.permute_param
    order = list(params.order)
    inshape = input_shape[0]
    output_shape = []
    for ii in order:
        assert ii < len(inshape), "invalid order for permute[%s]" % (name)
        output_shape.append(inshape[ii])
    return [output_shape]


def shape_power(layer, input_shape):
    return input_shape


def shape_priorbox(layer, input_shape):
    params = layer.prior_box_param
    min_size = list(params.min_size)
    max_size = list(params.max_size)
    aspect_ratio = list(params.aspect_ratio)
    assert len(input_shapes[0]) == 2, "invalid inputs for Priorbox[%s]" % (name)
    fc_shape = input_shapes[0][0]
    N = 1
    if not max_size == None:
        N += 1
    if not aspect_ratio == None:
        N += 2 * len(aspect_ratio)

    N_bbx = fc_shape[2] * fc_shape[3] * N
    output_shape = [[1, 2, 4 * N_bbx]]
    return output_shape


def shape_reduction(layer, input_shape):
    params = layer.reduction_param
    axis = params.axis
    if axis < 0:
        axis += len(input_shape[0]) + 1
    assert axis <= len(input_shape[0]), 'invalid axis[%d] error' % (axis)
    return [input_shape[0:axis]]


def shape_roipooling(layer, input_shape):
    params = layer.roi_pooling_param
    pooled_w = params.pooled_w
    pooled_h = params.pooled_h
    spatial_scale = params.spatial_scale
    assert len(
        input_shapes[0]) == 2, "not valid input shape for roipooling layer"
    base_fea_shape = input_shapes[0][0]
    rois_shape = input_shapes[0][1]
    output_shape = base_fea_shape
    output_shape[0] = rois_shape[0]
    output_shape[2] = pooled_h
    output_shape[3] = pooled_w
    return [output_shape]


def shape_select(layer, input_shape):
    input_shape = list(input_shape[0])
    params = layer.select_param
    axis = params.axis
    slice_point = list(params.slice_point)
    start = slice_point[0]
    if len(slice_point) == 2:
        end = slice_point[1]
    else:
        end = input_shape[axis]

    assert end > start, "invalid slice_point with [start:%d, end:%d]"\
             % (start, end)
    output_shape = input_shape
    output_shape[axis] = end - start
    return [output_shape]
S
SunAhong1993 已提交
456 457 458 459 460 461 462 463 464


def shape_shufflechannel(layer, input_shape):
    return input_shape


# def shape_convolutiondepthwise(layer, input_shape):
#     params = layer.convolution_param
#     return get_strided_kernel_output_shape(params, input_shape[0], math.floor)