Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
b8fe0843
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b8fe0843
编写于
7月 25, 2019
作者:
S
SunAhong1993
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add custom layer v1
上级
11f5f1c2
变更
2
展开全部
隐藏空白更改
内联
并排
Showing
2 changed file
with
741 addition
and
2 deletion
+741
-2
x2paddle/decoder/caffe_shape.py
x2paddle/decoder/caffe_shape.py
+223
-0
x2paddle/op_mapper/caffe_op_mapper.py
x2paddle/op_mapper/caffe_op_mapper.py
+518
-2
未找到文件。
x2paddle/decoder/caffe_shape.py
浏览文件 @
b8fe0843
...
...
@@ -230,3 +230,226 @@ def shape_batchnorm(layer, input_shape):
def
shape_scale
(
layer
,
input_shape
):
return
input_shape
def
shape_reshape
(
layer
,
input_shape
):
def
count
(
num_list
):
return
reduce
(
lambda
a
,
b
:
a
*
b
,
num_list
)
inshape
=
input_shape
[
0
]
params
=
layer
.
reshape_param
axis
=
params
.
axis
if
hasattr
(
params
,
axis
)
else
0
num_axes
=
params
.
num_axes
if
hasattr
(
params
,
num_axes
)
else
-
1
if
inshape
[
0
]
==
-
1
:
inshape
[
0
]
=
1
input_count
=
count
(
inshape
)
input_num_axes
=
len
(
inshape
)
input_start_axis
=
axis
start_axis
=
input_start_axis
if
input_start_axis
>=
0
\
else
input_num_axes
+
input_start_axis
+
1
assert
start_axis
>=
0
,
"[Reshape]axis %d out of range"
%
(
input_start_axis
)
assert
start_axis
<=
input_num_axes
,
"[Reshape]axis %d out of range for %d-D input data"
\
%
(
input_start_axis
,
input_num_axes
)
assert
num_axes
>=
-
1
,
"[Reshape]num_axes must be >= 0, or -1 for all"
end_axis
=
input_num_axes
if
num_axes
==
-
1
else
start_axis
+
num_axes
assert
end_axis
<=
input_num_axes
,
"end_axis[%d] = axis[%d] + num_axes[%d] is out of range"
\
%
(
end_axis
,
start_axis
,
num_axes
)
num_axes_replaced
=
end_axis
-
start_axis
num_axes_retained
=
input_num_axes
-
num_axes_replaced
num_new_axes
=
len
(
shape
[
'dim'
])
outshape
=
[]
for
i
in
range
(
start_axis
):
outshape
.
append
(
inshape
[
i
])
for
i
in
range
(
num_new_axes
):
outshape
.
append
(
shape
[
'dim'
][
i
])
for
i
in
range
(
end_axis
,
input_num_axes
):
outshape
.
append
(
inshape
[
i
])
assert
len
(
outshape
)
==
num_axes_retained
+
num_new_axes
,
\
"[Reshape]invalid dims of output shape[%s]"
%
(
str
(
outshape
))
inferred_axis
=
-
1
copy_axes
=
[]
constant_count
=
1
for
i
in
range
(
num_new_axes
):
top_dim
=
shape
[
'dim'
][
i
]
if
top_dim
==
0
:
copy_axes
.
append
(
i
)
copy_axis_index
=
start_axis
+
i
outshape
[
copy_axis_index
]
=
inshape
[
copy_axis_index
]
elif
top_dim
==
-
1
:
assert
inferred_axis
==
-
1
,
"[Reshape]new shape contains multiple -1 dims"
inferred_axis
=
i
else
:
constant_count
*=
top_dim
if
inferred_axis
>=
0
:
explicit_count
=
constant_count
l
=
inshape
[
0
:
start_axis
]
if
len
(
l
)
>
0
:
explicit_count
*=
count
(
l
)
l
=
inshape
[
end_axis
:]
if
len
(
l
)
>
0
:
explicit_count
*=
count
(
l
)
for
i
in
range
(
len
(
copy_axes
)):
explicit_count
*=
outshape
[
start_axis
+
copy_axes
[
i
]]
assert
input_count
%
explicit_count
==
0
,
"[Reshape]botom count[%d] "
\
"must be divisible by product of the specified dimensions[%d] "
\
%
(
input_count
,
explicit_count
)
outshape
[
start_axis
+
inferred_axis
]
=
input_count
/
explicit_count
output_count
=
count
(
outshape
)
assert
output_count
==
input_count
,
"[Reshape]output count[%d] must match input count[%d]"
%
(
output_count
,
input_count
)
if
inshape
[
0
]
==
-
1
:
outshape
[
0
]
=
-
1
return
[
outshape
]
def
shape_argmax
(
layer
,
input_shape
):
inshape
=
input_shape
[
0
]
params
=
layer
.
argmax_param
out_max_val
=
params
.
out_max_val
if
hasattr
(
params
,
out_max_val
)
else
False
top_k
=
params
.
top_k
if
hasattr
(
params
,
top_k
)
else
1
axis
=
parmas
.
axis
if
hasattr
(
params
,
axis
)
else
-
1
if
axis
<
0
:
axis
+=
len
(
inshape
)
assert
(
axis
+
1
==
len
(
inshape
)
),
'only can be applied on the last dimension[axis:%d, %s] now,'
\
'make sure you have set axis param in xxx.prototxt file'
\
%
(
axis
,
str
(
inshape
))
outshape
=
inshape
outshape
[
-
1
]
=
top_k
if
out_max_val
is
True
:
outshape
[
-
1
]
*=
2
return
[
outshape
]
def
shape_axpy
(
layer
,
input_shape
):
assert
len
(
input_shapes
)
==
3
,
"not valid input shape for axpy layer"
assert
len
(
input_shapes
[
0
])
==
len
(
input_shapes
[
1
]),
'should have same dims'
output_shape
=
input_shapes
[
1
]
assert
(
input_shapes
[
2
]
==
output_shape
),
\
"shape not consistent for axpy[%s <--> %s]"
\
%
(
str
(
output_shape
),
str
(
input_shapes
[
2
]))
return
[
output_shape
]
def
shape_crop
(
layer
,
input_shape
):
assert
len
(
input_shape
)
==
2
,
"the number of crop's inputs must be 2"
return
[
input_shape
[
1
]]
def
shape_detectionoutput
(
layer
,
input_shape
):
return
[[
-
1
,
6
]]
def
shape_flatten
(
layer
,
input_shape
):
assert
len
(
input_shape
)
==
1
,
"the number of flatten's inputs must be 1"
params
=
layer
.
flatten_param
start_axis
=
params
.
axis
end_axis
=
params
.
end_axis
if
start_axis
<
0
:
start_axis
+=
len
(
input_shape
[
0
])
if
end_axis
<
0
:
end_axis
+=
len
(
input_shape
[
0
])
+
1
assert
start_axis
<=
end_axis
,
'invalid axis[%d] or end_axis[%d] params'
\
%
(
start_axis
,
end_axis
)
output_shape
=
[
0
]
*
(
start_axis
-
0
)
+
[
-
1
]
+
[
0
]
*
(
len
(
input_shape
[
0
])
-
end_axis
)
return
[
output_shape
]
def
shape_normalize
(
layer
,
input_shape
):
return
input_shape
def
shape_permute
(
layer
,
input_shape
):
params
=
layer
.
permute_param
order
=
list
(
params
.
order
)
inshape
=
input_shape
[
0
]
output_shape
=
[]
for
ii
in
order
:
assert
ii
<
len
(
inshape
),
"invalid order for permute[%s]"
%
(
name
)
output_shape
.
append
(
inshape
[
ii
])
return
[
output_shape
]
def
shape_power
(
layer
,
input_shape
):
return
input_shape
def
shape_priorbox
(
layer
,
input_shape
):
params
=
layer
.
prior_box_param
min_size
=
list
(
params
.
min_size
)
max_size
=
list
(
params
.
max_size
)
aspect_ratio
=
list
(
params
.
aspect_ratio
)
assert
len
(
input_shapes
[
0
])
==
2
,
"invalid inputs for Priorbox[%s]"
%
(
name
)
fc_shape
=
input_shapes
[
0
][
0
]
N
=
1
if
not
max_size
==
None
:
N
+=
1
if
not
aspect_ratio
==
None
:
N
+=
2
*
len
(
aspect_ratio
)
N_bbx
=
fc_shape
[
2
]
*
fc_shape
[
3
]
*
N
output_shape
=
[[
1
,
2
,
4
*
N_bbx
]]
return
output_shape
def
shape_reduction
(
layer
,
input_shape
):
params
=
layer
.
reduction_param
axis
=
params
.
axis
if
axis
<
0
:
axis
+=
len
(
input_shape
[
0
])
+
1
assert
axis
<=
len
(
input_shape
[
0
]),
'invalid axis[%d] error'
%
(
axis
)
return
[
input_shape
[
0
:
axis
]]
def
shape_roipooling
(
layer
,
input_shape
):
params
=
layer
.
roi_pooling_param
pooled_w
=
params
.
pooled_w
pooled_h
=
params
.
pooled_h
spatial_scale
=
params
.
spatial_scale
assert
len
(
input_shapes
[
0
])
==
2
,
"not valid input shape for roipooling layer"
base_fea_shape
=
input_shapes
[
0
][
0
]
rois_shape
=
input_shapes
[
0
][
1
]
output_shape
=
base_fea_shape
output_shape
[
0
]
=
rois_shape
[
0
]
output_shape
[
2
]
=
pooled_h
output_shape
[
3
]
=
pooled_w
return
[
output_shape
]
def
shape_select
(
layer
,
input_shape
):
input_shape
=
list
(
input_shape
[
0
])
params
=
layer
.
select_param
axis
=
params
.
axis
slice_point
=
list
(
params
.
slice_point
)
start
=
slice_point
[
0
]
if
len
(
slice_point
)
==
2
:
end
=
slice_point
[
1
]
else
:
end
=
input_shape
[
axis
]
assert
end
>
start
,
"invalid slice_point with [start:%d, end:%d]"
\
%
(
start
,
end
)
output_shape
=
input_shape
output_shape
[
axis
]
=
end
-
start
return
[
output_shape
]
x2paddle/op_mapper/caffe_op_mapper.py
浏览文件 @
b8fe0843
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录