# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math def get_params_w_h(params): if hasattr(params, 'dilation'): if len(params.dilation) == 0: dila_h = 1 dila_w = 1 elif len(params.dilation) == 1: dila_h = params.dilation[0] dila_w = params.dilation[0] else: dila_h = params.dilation[0] dila_w = params.dilation[1] else: dila_h = 1 dila_w = 1 if not isinstance(getattr(params, 'pad'), int): if len(params.pad) == 0: pad_h = 0 pad_w = 0 elif len(params.pad) == 1: pad_h = params.pad[0] pad_w = params.pad[0] else: pad_h, pad_w, = params.pad[0] pad_w = params.pad[1] if params.pad_h != 0 or params.pad_w != 0: pad_h = params.pad_h pad_w = params.pad_w else: if params.pad_h != 0 or params.pad_w != 0: pad_h = params.pad_h pad_w = params.pad_w else: pad_h = getattr(params, 'pad') pad_w = getattr(params, 'pad') if not isinstance(getattr(params, 'kernel_size'), int): if len(params.kernel_size) == 0: kernel_h = 1 kernel_w = 1 elif len(params.kernel_size) == 1: kernel_h = params.kernel_size[0] kernel_w = params.kernel_size[0] else: kernel_h = params.kernel_size[0] kernel_w = params.kernel_size[1] if params.kernel_h != 0 or params.kernel_w != 0: kernel_h = params.kernel_h kernel_w = params.kernel_w else: if params.kernel_h != 0 or params.kernel_w != 0: kernel_h = params.kernel_h kernel_w = params.kernel_w else: kernel_h = getattr(params, 'kernel_size') kernel_w = getattr(params, 'kernel_size') if not isinstance(getattr(params, 'stride'), int): if len(params.stride) == 0: stride_h = 1 stride_w = 1 elif len(params.stride) == 1: stride_h = params.stride[0] stride_w = params.stride[0] else: stride_h = params.stride[0] stride_w = params.stride[1] if params.stride_h != 0 or params.stride_w != 0: stride_h = params.stride_h stride_w = params.stride_w else: if params.stride_h != 0 or params.stride_w != 0: stride_h = params.stride_h stride_w = params.stride_w else: stride_h = getattr(params, 'stride') stride_w = getattr(params, 'stride') return dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w def get_filter_output_shape(i_h, i_w, params, round_func): dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_params_w_h( params) o_h = (i_h + 2 * pad_h - (dila_h * (kernel_h - 1) + 1)) / float(stride_h) + 1 o_w = (i_w + 2 * pad_w - (dila_w * (kernel_w - 1) + 1)) / float(stride_w) + 1 return (int(round_func(o_h)), int(round_func(o_w))) def get_strided_kernel_output_shape(params, input_shape, round_func): o_h, o_w = get_filter_output_shape(input_shape[2], input_shape[3], params, round_func) has_c_o = hasattr(params, 'num_output') c = params.num_output if has_c_o else input_shape[1] return [[input_shape[0], c, o_h, o_w]] def shape_convolution(layer, input_shape): params = layer.convolution_param return get_strided_kernel_output_shape(params, input_shape[0], math.floor) def shape_deconvolution(layer, input_shape): h_i = input_shape[2] w_i = input_shape[3] params = layer.convolution_param dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_params_w_h( params) h_o = (h_i - 1) * stride_h - 2 * pad_h + dila_h * (kernel_h - 1) + 1 w_o = (w_i - 1) * stride_w - 2 * pad_w + dila_w * (kernel_w - 1) + 1 has_c_o = hasattr(params, 'num_output') c = params.num_output if has_c_o else input_shape.channels return [[input_shape[0][0], c, h_o, w_o]] def shape_pooling(layer, input_shape): params = layer.pooling_param global_pool = getattr(params, 'global_pooling', False) if global_pool: return [[input_shape[0][0], input_shape[0][1], 1, 1]] ceil_mode = getattr(params, 'ceil_mode', True) if ceil_mode is True: method = math.ceil else: method = math.floor return get_strided_kernel_output_shape(params, input_shape[0], method) def shape_innerproduct(layer, input_shape): params = layer.inner_product_param return [[input_shape[0][0], params.num_output]] def shape_lrn(layer, input_shape): return input_shape def shape_relu(layer, input_shape): return input_shape def shape_softmax(layer, input_shape): return input_shape def shape_input(layer, input_shape): return [list(layer.input_param.shape[0].dim)] def shape_concat(layer, input_shape): params = layer.concat_param axis = params.axis output_shape = None for shape in input_shape: if output_shape is None: output_shape = shape else: output_shape[axis] += shape[axis] return [output_shape] def shape_slice(layer, input_shape): inshape = input_shape[0] params = layer.slice_param axis = params.axis count = inshape[axis] points = list(params.slice_point) points = [0] + points + [count] output_shape = [] for i in range(len(points)): shape = inshape size = points[i + 1] - points[i] shape[axis] = size output_shape.append(shape) if i == len(points) - 2: break return output_shape def shape_prelu(layer, input_shape): return input_shape def shape_sigmoid(layer, input_shape): return input_shape def shape_absval(layer, input_shape): return input_shape def shape_accuracy(layer, input_shape): return [[1]] def shape_tanh(layer, input_shape): return input_shape def shape_eltwise(layer, input_shape): return [input_shape[0]] def shape_batchnorm(layer, input_shape): return input_shape def shape_scale(layer, input_shape): return input_shape def shape_reshape(layer, input_shape): def count(num_list): return reduce(lambda a, b: a * b, num_list) inshape = input_shape[0] params = layer.reshape_param axis = params.axis if hasattr(params, axis) else 0 num_axes = params.num_axes if hasattr(params, num_axes) else -1 if inshape[0] == -1: inshape[0] = 1 input_count = count(inshape) input_num_axes = len(inshape) input_start_axis = axis start_axis = input_start_axis if input_start_axis >= 0 \ else input_num_axes + input_start_axis + 1 assert start_axis >= 0, "[Reshape]axis %d out of range" % (input_start_axis) assert start_axis <= input_num_axes, "[Reshape]axis %d out of range for %d-D input data"\ % (input_start_axis, input_num_axes) assert num_axes >= -1, "[Reshape]num_axes must be >= 0, or -1 for all" end_axis = input_num_axes if num_axes == -1 else start_axis + num_axes assert end_axis <= input_num_axes, "end_axis[%d] = axis[%d] + num_axes[%d] is out of range"\ % (end_axis, start_axis, num_axes) num_axes_replaced = end_axis - start_axis num_axes_retained = input_num_axes - num_axes_replaced num_new_axes = len(shape['dim']) outshape = [] for i in range(start_axis): outshape.append(inshape[i]) for i in range(num_new_axes): outshape.append(shape['dim'][i]) for i in range(end_axis, input_num_axes): outshape.append(inshape[i]) assert len(outshape) == num_axes_retained + num_new_axes,\ "[Reshape]invalid dims of output shape[%s]" % (str(outshape)) inferred_axis = -1 copy_axes = [] constant_count = 1 for i in range(num_new_axes): top_dim = shape['dim'][i] if top_dim == 0: copy_axes.append(i) copy_axis_index = start_axis + i outshape[copy_axis_index] = inshape[copy_axis_index] elif top_dim == -1: assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims" inferred_axis = i else: constant_count *= top_dim if inferred_axis >= 0: explicit_count = constant_count l = inshape[0:start_axis] if len(l) > 0: explicit_count *= count(l) l = inshape[end_axis:] if len(l) > 0: explicit_count *= count(l) for i in range(len(copy_axes)): explicit_count *= outshape[start_axis + copy_axes[i]] assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\ "must be divisible by product of the specified dimensions[%d] "\ % (input_count, explicit_count) outshape[start_axis + inferred_axis] = input_count / explicit_count output_count = count(outshape) assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % ( output_count, input_count) if inshape[0] == -1: outshape[0] = -1 return [outshape] def shape_argmax(layer, input_shape): inshape = input_shape[0] params = layer.argmax_param out_max_val = params.out_max_val if hasattr(params, out_max_val) else False top_k = params.top_k if hasattr(params, top_k) else 1 axis = parmas.axis if hasattr(params, axis) else -1 if axis < 0: axis += len(inshape) assert (axis + 1 == len(inshape) ), 'only can be applied on the last dimension[axis:%d, %s] now,'\ 'make sure you have set axis param in xxx.prototxt file' \ % (axis, str(inshape)) outshape = inshape outshape[-1] = top_k if out_max_val is True: outshape[-1] *= 2 return [outshape] def shape_axpy(layer, input_shape): assert len(input_shapes) == 3, "not valid input shape for axpy layer" assert len(input_shapes[0]) == len(input_shapes[1]), 'should have same dims' output_shape = input_shapes[1] assert (input_shapes[2] == output_shape),\ "shape not consistent for axpy[%s <--> %s]" \ % (str(output_shape), str(input_shapes[2])) return [output_shape] def shape_crop(layer, input_shape): assert len(input_shape) == 2, "the number of crop's inputs must be 2" return [input_shape[1]] def shape_detectionoutput(layer, input_shape): return [[-1, 6]] def shape_flatten(layer, input_shape): assert len(input_shape) == 1, "the number of flatten's inputs must be 1" params = layer.flatten_param start_axis = params.axis end_axis = params.end_axis if start_axis < 0: start_axis += len(input_shape[0]) if end_axis < 0: end_axis += len(input_shape[0]) + 1 assert start_axis <= end_axis, 'invalid axis[%d] or end_axis[%d] params'\ % (start_axis, end_axis) output_shape = [0] * (start_axis - 0) + [ -1 ] + [0] * (len(input_shape[0]) - end_axis) return [output_shape] def shape_normalize(layer, input_shape): return input_shape def shape_permute(layer, input_shape): params = layer.permute_param order = list(params.order) inshape = input_shape[0] output_shape = [] for ii in order: assert ii < len(inshape), "invalid order for permute[%s]" % (name) output_shape.append(inshape[ii]) return [output_shape] def shape_power(layer, input_shape): return input_shape def shape_priorbox(layer, input_shape): params = layer.prior_box_param min_size = list(params.min_size) max_size = list(params.max_size) aspect_ratio = list(params.aspect_ratio) assert len(input_shapes[0]) == 2, "invalid inputs for Priorbox[%s]" % (name) fc_shape = input_shapes[0][0] N = 1 if not max_size == None: N += 1 if not aspect_ratio == None: N += 2 * len(aspect_ratio) N_bbx = fc_shape[2] * fc_shape[3] * N output_shape = [[1, 2, 4 * N_bbx]] return output_shape def shape_reduction(layer, input_shape): params = layer.reduction_param axis = params.axis if axis < 0: axis += len(input_shape[0]) + 1 assert axis <= len(input_shape[0]), 'invalid axis[%d] error' % (axis) return [input_shape[0:axis]] def shape_roipooling(layer, input_shape): params = layer.roi_pooling_param pooled_w = params.pooled_w pooled_h = params.pooled_h spatial_scale = params.spatial_scale assert len( input_shapes[0]) == 2, "not valid input shape for roipooling layer" base_fea_shape = input_shapes[0][0] rois_shape = input_shapes[0][1] output_shape = base_fea_shape output_shape[0] = rois_shape[0] output_shape[2] = pooled_h output_shape[3] = pooled_w return [output_shape] def shape_select(layer, input_shape): input_shape = list(input_shape[0]) params = layer.select_param axis = params.axis slice_point = list(params.slice_point) start = slice_point[0] if len(slice_point) == 2: end = slice_point[1] else: end = input_shape[axis] assert end > start, "invalid slice_point with [start:%d, end:%d]"\ % (start, end) output_shape = input_shape output_shape[axis] = end - start return [output_shape] def shape_shufflechannel(layer, input_shape): return input_shape # def shape_convolutiondepthwise(layer, input_shape): # params = layer.convolution_param # return get_strided_kernel_output_shape(params, input_shape[0], math.floor)