caffe_op_mapper.py 45.9 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
import sys
S
SunAhong1993 已提交
16 17 18 19 20
import numbers
import numpy as np
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
from x2paddle.core.program import PaddleGraph 
S
SunAhong1993 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
from x2paddle.decoder.caffe_decoder import CaffeGraphNode


def _adjust_parameters(node):
    data = node.data
    # When using the protobuf-backend, each parameter initially has four dimensions.
    # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
    # This implementation takes care of the common cases. However, it does leave the
    # potential for future issues.
    # The Caffe-backend does not suffer from this problem.
    data = list(data)

    squeeze_indices = [1]  # Squeeze biases.
    if node.layer_type == 'InnerProduct':
        squeeze_indices.append(0)  # Squeeze FC.

    for idx in squeeze_indices:
        if idx >= len(data):
            continue

        d = data[idx]
        assert len(
            d.shape
        ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
            str(d.shape))

        shape_old = d.shape
        sq_axis = None
        if idx == 0:
            sq_axis = (0, 1)
        elif idx == 1:
            sq_axis = (0, 1, 2)
        else:
            continue

        data[idx] = np.squeeze(d, axis=sq_axis)
        shape_new = data[idx].shape
    return data

def _get_kernel_parameters(kind, params):
    assert kind in ["Convolution", "Pooling", "Deconvolution", "ConvolutionDepthwise"]
    [k_h, k_w] = [1, 1]
    if isinstance(params.kernel_size, numbers.Number):
        [k_h, k_w] = [params.kernel_size] * 2
    elif len(params.kernel_size) > 0:
        k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[
            0]
        k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
            len(params.kernel_size) - 1]
    elif params.kernel_h > 0 or params.kernel_w > 0:
        k_h = params.kernel_h
        k_w = params.kernel_w
    [s_h, s_w] = [1, 1]
    if isinstance(params.stride, numbers.Number):
        [s_h, s_w] = [params.stride] * 2
    elif len(params.stride) > 0:
        s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
        s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
            params.stride) - 1]
    elif params.stride_h > 0 or params.stride_w > 0:
        s_h = params.stride_h
        s_w = params.stride_w
    [p_h, p_w] = [0, 0]
    if isinstance(params.pad, numbers.Number):
        [p_h, p_w] = [params.pad] * 2
    elif len(params.pad) > 0:
        p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
        p_w = params.pad_w if params.pad_w > 0 else params.pad[len(
            params.pad) - 1]
    elif params.pad_h > 0 or params.pad_w > 0:
        p_h = params.pad_h
        p_w = params.pad_w
    dila_h = dila_w = 1
    group = 1
    c_o = 1
    if kind in ["Convolution", "Deconvolution", "ConvolutionDepthwise"]:
        if kind in ["Convolution", "Deconvolution"]:
            c_o = params.num_output
        dila_len = len(params.dilation)
        if dila_len == 2:
            dila_h = params.dilation[0]
            dila_w = params.dilation[1]
        elif dila_len == 1:
            dila_h = dila_w = params.dilation[0]
        else:
            assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                dila_len)
    if kind in ['Convolution', 'Deconvolution']:
        group = params.group
    kernel = [k_h, k_w]
    stride = [s_h, s_w]
    pad = [p_h, p_w]
    dilation = [dila_h, dila_w]
    return c_o, kernel, stride, pad, dilation, group
S
SunAhong1993 已提交
115 116 117 118


class CaffeOpMapper(OpMapper):
    directly_map_ops = {
S
SunAhong1993 已提交
119 120
        'Sigmoid': ['paddle.nn.layer.Sigmoid'],
        'TanH': ['paddle.nn.Tanh'],
S
SunAhong1993 已提交
121 122 123 124 125
    }

    def __init__(self, decoder):
        super(CaffeOpMapper, self).__init__()
        self.graph = decoder.caffe_graph
S
SunAhong1993 已提交
126 127
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
128
        self.params = dict()
S
SunAhong1993 已提交
129 130
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="dygraph", source_type="caffe")
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
131 132 133
        self.input_index = 0 
        self.inputs_info = {}
        self.nn_name2id = {}
S
SunAhong1993 已提交
134 135 136 137 138 139 140 141
        print("Total nodes: {}".format(
            sum([
                isinstance(node, CaffeGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
S
SunAhong1993 已提交
142 143 144 145 146 147 148
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in self.directly_map_ops:
                self.directly_map(node)
S
SunAhong1993 已提交
149
        print("\nNodes converted.")
S
SunAhong1993 已提交
150 151 152
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
SunAhong1993 已提交
153 154 155 156 157 158
                
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
S
SunAhong1993 已提交
159
            if not hasattr(self, op) and op not in self.directly_map_ops:
S
SunAhong1993 已提交
160 161 162 163
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
S
SunAhong1993 已提交
164 165 166
            if len(unsupported_ops) > 0:
                print("\n========= {} OPs are not supported yet ===========".format(
                    len(unsupported_ops)))
S
SunAhong1993 已提交
167
            for op in unsupported_ops:
S
SunAhong1993 已提交
168
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
169
            return False
S
SunAhong1993 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
        
    def directly_map(self, node):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
        if paddle_op.startswith("paddle.nn"):
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
                kernel=paddle_op,
                inputs={"x": input.name},
                outputs=layer_outputs)
S
SunAhong1993 已提交
186
        else:
S
SunAhong1993 已提交
187 188 189 190
            self.paddle_graph.add_layer(
                kernel=paddle_op,
                inputs={"x": input.name},
                outputs=[node.name])
S
SunAhong1993 已提交
191 192

    def Input(self, node):
S
SunAhong1993 已提交
193
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
194 195 196 197 198 199 200 201 202
            "paddle.to_tensor",
            inputs={},
            outputs=[node.layer_name],
            data="x{}".format(self.input_index))
        shape = list(node.layer.input_param.shape[0].dim)[1:]
        self.inputs_info["x{}".format(self.input_index)] = [[-1] + shape, "float32"]
        self.input_index += 1

    def Convolution(self, node):
S
SunAhong1993 已提交
203
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
204 205 206 207
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
208
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
209 210 211 212 213 214 215
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
216
                np.zeros([out_channel, node.in_shapes[0][1], kernel[0], kernel[1]]).astype(
S
SunAhong1993 已提交
217 218 219
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
220
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
221 222 223 224 225
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Convolution node\'s input is not 1."
S
SunAhong1993 已提交
226
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
227
        layer_attrs = {
S
SunAhong1993 已提交
228
            "in_channels": node.in_shapes[0][1],
S
SunAhong1993 已提交
229 230 231 232 233 234 235 236 237
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
238
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
239
            "paddle.nn.Conv2D",
S
SunAhong1993 已提交
240
            inputs={"input": input.name},
S
SunAhong1993 已提交
241 242
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
243 244 245 246
        
    def DepthwiseConvolution(self, node):
        node.layer_type = "ConvolutionDepthwise"
        self.ConvolutionDepthwise(node)
S
SunAhong1993 已提交
247 248

    def Deconvolution(self, node):
S
SunAhong1993 已提交
249
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
250 251 252 253
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
254
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
255 256 257 258 259 260 261
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
262
                np.zeros([out_channel, node.in_shapes[0][1], kernel[0], kernel[1]]).astype(
S
SunAhong1993 已提交
263 264 265
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
266
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
267 268 269 270 271
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
S
SunAhong1993 已提交
272
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
273
        layer_attrs = {
S
SunAhong1993 已提交
274
            "in_channels": node.in_shapes[0][1],
S
SunAhong1993 已提交
275 276 277 278 279 280 281 282 283
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
284
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
285
            "paddle.nn.Conv2DTranspose",
S
SunAhong1993 已提交
286
            inputs={"input": input.name},
S
SunAhong1993 已提交
287 288 289 290
            outputs=layer_outputs,
            **layer_attrs)
        
    def ConvolutionDepthwise(self, node):
S
SunAhong1993 已提交
291
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
292 293 294 295
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
296
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
297
            node.layer_type, params)
S
SunAhong1993 已提交
298 299
        out_channel = params.num_output if params.num_output is not None else node.in_shapes[0][1]
        in_channel = node.in_shapes[0][1]
S
SunAhong1993 已提交
300 301 302 303 304 305 306 307
        group = int(in_channel / (in_channel / out_channel)) if in_channel > out_channel else int(in_channel /
                                                                (out_channel / in_channel))
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
308
                np.zeros([out_channel, node.in_shapes[0][1], kernel[0], kernel[1]]).astype(
S
SunAhong1993 已提交
309 310 311
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
312
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
313 314 315 316 317
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
S
SunAhong1993 已提交
318
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
319 320 321 322 323 324 325 326 327 328 329
        layer_attrs = {
            "in_channels": in_channel,
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
330
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
331
            "paddle.nn.Conv2D",
S
SunAhong1993 已提交
332
            inputs={"input": input.name},
S
SunAhong1993 已提交
333 334 335 336
            outputs=layer_outputs,
            **layer_attrs)

    def Pooling(self, node):
S
SunAhong1993 已提交
337
        pool2d_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
338 339 340 341 342 343
        output_name = node.layer_name
        layer_outputs = [pool2d_name, output_name]
        params = node.layer.pooling_param
        ceil_mode = getattr(params, "ceil_mod", True)
        global_pool = getattr(params, "global_pooling", False)
        kernel_default = [1, 1]
S
SunAhong1993 已提交
344
        channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
345 346 347 348 349 350 351
            node.layer_type, params)
        if params.pool == 0:
            pool_type = "max"
        else:
            pool_type = "avg"
        assert len(
            node.inputs) == 1, "The count of Pooling node\'s input is not 1."
S
SunAhong1993 已提交
352
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
353 354 355 356
        if global_pool:
            if kernel[0] == 0:
                kernel = [1, 1]
            if params.pool == 0:
S
SunAhong1993 已提交
357
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
358
                    "paddle.nn.AdaptiveMaxPool2D",
S
SunAhong1993 已提交
359
                    inputs={"input": input.name},
S
SunAhong1993 已提交
360 361 362
                    outputs=layer_outputs,
                    output_size=kernel)
            else:
S
SunAhong1993 已提交
363
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
364
                    "paddle.nn.AdaptiveAvgPool2D",
S
SunAhong1993 已提交
365
                    inputs={"input": input.name},
S
SunAhong1993 已提交
366 367
                    outputs=layer_outputs,
                    output_size=kernel)
S
SunAhong1993 已提交
368
        else:
S
SunAhong1993 已提交
369 370 371 372 373 374 375 376 377
            layer_attrs = {
                'pool_size': kernel,
                'pool_stride': stride,
                'pool_padding': pad,
                'ceil_mode': ceil_mode,
                'pool_type': string(pool_type),
                'exclusive': False,
                'global_pooling': global_pool,
            }
S
SunAhong1993 已提交
378
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
379
                "paddle.fluid.dygraph.Pool2D",
S
SunAhong1993 已提交
380
                inputs={"input": input.name},
S
SunAhong1993 已提交
381 382
                outputs=layer_outputs,
                **layer_attrs)
S
SunAhong1993 已提交
383 384 385 386 387 388 389
#             layer_attrs = {
#                 'kernel_size': kernel,
#                 'stride': stride,
#                 'padding': pad,
#                 'ceil_mode': ceil_mode,
#             }
#             if params.pool == 0:
S
SunAhong1993 已提交
390
#                 self.paddle_graph.add_layer(
S
SunAhong1993 已提交
391
#                     "paddle.nn.MaxPool2D",
S
SunAhong1993 已提交
392
#                     inputs={"input": input.name},
S
SunAhong1993 已提交
393 394 395 396
#                     outputs=layer_outputs,
#                     **layer_attrs)
#             else:
#                 layer_attrs["count_include_pad"] = True
S
SunAhong1993 已提交
397
#                 self.paddle_graph.add_layer(
S
SunAhong1993 已提交
398
#                     "paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
399
#                     inputs={"input": input.name},
S
SunAhong1993 已提交
400 401
#                     outputs=layer_outputs,
#                     **layer_attrs)
S
SunAhong1993 已提交
402 403 404

    def LRN(self, node):
        assert len(node.inputs) == 1, "The count of LRN node\'s input is not 1."
S
SunAhong1993 已提交
405
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
406 407 408 409 410 411 412 413 414
        params = node.layer.lrn_param
        assert params.local_size % 2 == 1
        alpha = params.alpha / float(params.local_size)
        layer_attrs = {
            "n": params.local_size,
            "k": params.k,
            "alpha": alpha,
            "beta": params.beta,
        }
S
SunAhong1993 已提交
415
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
416
            "fluid.layers.lrn", 
S
SunAhong1993 已提交
417
            inputs={"input": input.name},
S
SunAhong1993 已提交
418 419 420 421
            outputs=[node.layer_name],
            **layer_attrs)

    def InnerProduct(self, node):
S
SunAhong1993 已提交
422
        linear_name = name_generator("linear", self.nn_name2id)
S
SunAhong1993 已提交
423 424 425
        output_name = node.layer_name
        layer_outputs = [linear_name, output_name]
        data = node.data
S
SunAhong1993 已提交
426
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
427 428 429 430 431 432 433
        params = node.layer.inner_product_param
        if data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0."
                .format(node.layer_name, node.layer_type))
            data = []
            data.append(
S
SunAhong1993 已提交
434
                np.zeros([node.in_shapes[0][1], params.num_output]).astype("float32").astype(
S
SunAhong1993 已提交
435 436 437 438
                    "float32"))
            data.append(
                np.zeros([params.num_output]).astype("float32").astype("float32"))
        else:
S
SunAhong1993 已提交
439
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
            # Reshape the parameters to Paddle's ordering
            transpose_order = (1, 0)
            w = data[0]
            fc_shape = w.shape
            output_channels = fc_shape[0]
            w = w.reshape((output_channels, -1))
            w = w.transpose(transpose_order)
            data[0] = w

        self.params[linear_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[linear_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of InnerProduct node\'s input is not 1."
        assert params.axis == 1
        assert params.bias_term == True
        layer_attrs = {
            "in_features": data[0].shape[0],
            "out_features": params.num_output           
        }
        if len(data) == 1:
            layer_attrs["bias"] = False
S
SunAhong1993 已提交
462
        if node.in_shapes[0][-1] != data[0].shape[0]:
S
SunAhong1993 已提交
463
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
464
                "paddle.reshape",
S
SunAhong1993 已提交
465
                inputs={"x": input.name},
S
SunAhong1993 已提交
466 467
                outputs=[output_name],
                shape=[-1, data[0].shape[0]])
S
SunAhong1993 已提交
468
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
469 470 471 472 473
                "paddle.nn.Linear",
                inputs={"input": output_name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
474
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
475
                "paddle.nn.Linear",
S
SunAhong1993 已提交
476
                inputs={"input": input.name},
S
SunAhong1993 已提交
477 478 479 480 481 482 483
                outputs=layer_outputs,
                **layer_attrs)
        
    def AbsVal(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of AbsVal node\'s input is not more than 1."
S
SunAhong1993 已提交
484
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
485
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
486
            "paddle.abs",
S
SunAhong1993 已提交
487
            inputs={"input": input.name},
S
SunAhong1993 已提交
488 489 490
            outputs=[node.layer_name])

    def Softmax(self, node):
S
SunAhong1993 已提交
491
        softmax_name = name_generator("softmax", self.nn_name2id)
S
SunAhong1993 已提交
492 493 494 495
        output_name = node.layer_name
        layer_outputs = [softmax_name, output_name]
        assert len(
            node.inputs) == 1, "The count of Softmax node\'s input is not 1."
S
SunAhong1993 已提交
496
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
497 498
        params = node.layer.softmax_param
        axis = params.axis
S
SunAhong1993 已提交
499
        shape = node.in_shapes[0]
S
SunAhong1993 已提交
500 501 502
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
503
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
504
            "paddle.nn.Softmax",
S
SunAhong1993 已提交
505
            inputs={"input": input.name},
S
SunAhong1993 已提交
506 507 508 509 510 511
            outputs=layer_outputs,
            **layer_attrs)

    def Slice(self, node):
        assert len(
            node.inputs) == 1, "The count of Slice node\'s input is not 1."
S
SunAhong1993 已提交
512
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
513 514 515 516 517 518
        top_len = len(node.layer.top)
        params = node.layer.slice_param
        axis = params.axis
        slice_dim = params.slice_dim
        if slice_dim != 1 and axis == 1:
            axis = slice_dim
S
SunAhong1993 已提交
519
        output_shape = node.out_shapes
S
SunAhong1993 已提交
520 521 522
        sections_list = list()
        outputs_list = list()
        for i, s in enumerate(output_shape):
S
SunAhong1993 已提交
523
            sections_list.append(s[axis])
S
SunAhong1993 已提交
524
            outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
525 526
        layer_attrs = {
            'num_or_sections': sections_list,
S
SunAhong1993 已提交
527
            'axis': axis,
S
SunAhong1993 已提交
528
        }
S
SunAhong1993 已提交
529
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
530
            "paddle.split",
S
SunAhong1993 已提交
531
            inputs={"x": input.name},
S
SunAhong1993 已提交
532
            outputs=outputs_list,
S
SunAhong1993 已提交
533 534 535 536 537 538
            **layer_attrs)

    def Concat(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of Concat node\'s input is not more than 1."
S
SunAhong1993 已提交
539
        inputs_list = list()
S
SunAhong1993 已提交
540
        for i in range(len(node.inputs)):
S
SunAhong1993 已提交
541 542
            input = self.graph.get_input_node(node, idx=i, copy=True)
            inputs_list.append(input.name)
S
SunAhong1993 已提交
543 544 545
        params = node.layer.concat_param
        axis = params.axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
546
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
547
            "paddle.concat",
S
SunAhong1993 已提交
548
            inputs={"x": inputs_list},
S
SunAhong1993 已提交
549 550 551 552
            outputs=[node.layer_name],
            **layer_attrs)

    def ReLU(self, node):
S
SunAhong1993 已提交
553
        relu_name = name_generator("relu", self.nn_name2id)
S
SunAhong1993 已提交
554 555 556 557
        output_name = node.layer_name
        layer_outputs = [relu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU node\'s input is not 1."
S
SunAhong1993 已提交
558
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
559 560 561 562 563
        params = node.layer.relu_param
        if params.HasField('negative_slope') and params.negative_slope != 0:
            negative_slope = float(params.negative_slope)

            layer_attrs = {'alpha': negative_slope}
S
SunAhong1993 已提交
564
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
565
                "paddle.nn.LeakyReLU",
S
SunAhong1993 已提交
566
                inputs={"input": input.name},
S
SunAhong1993 已提交
567 568 569
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
570
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
571
                "paddle.nn.ReLU",
S
SunAhong1993 已提交
572
                inputs={"input": input.name},
S
SunAhong1993 已提交
573 574 575
                outputs=layer_outputs)

    def PReLU(self, node):
S
SunAhong1993 已提交
576
        prelu_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
577 578 579 580
        output_name = node.layer_name
        layer_outputs = [prelu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of PReLU node\'s input is not 1."
S
SunAhong1993 已提交
581
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
582 583
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
S
SunAhong1993 已提交
584
        output_shape = node.out_shapes[0]
S
SunAhong1993 已提交
585
        if mode_bool:
S
SunAhong1993 已提交
586
            num_parameters = 1
S
SunAhong1993 已提交
587
        else:
S
SunAhong1993 已提交
588
            num_parameters = output_shape[1]
S
SunAhong1993 已提交
589 590 591 592
        data = node.data
        self.params[prelu_name + '._weight'] = np.squeeze(data[0])
        assert data is not None, "The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.".format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
593
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
594
            "paddle.nn.PReLU",
S
SunAhong1993 已提交
595
            inputs={"input": input.name},
S
SunAhong1993 已提交
596
            outputs=layer_outputs,
S
SunAhong1993 已提交
597
            num_parameters=num_parameters)
S
SunAhong1993 已提交
598 599 600 601 602 603 604

    def Eltwise(self, node):
        assert len(
            node.inputs) == 2, "The count of Eltwise node\'s input is not 2."
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
S
SunAhong1993 已提交
605 606 607 608
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
        input0_name = input0.name
        input1_name = input1.name
S
SunAhong1993 已提交
609 610 611 612
        if mode == 0:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
613
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
614 615 616 617 618 619
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name])
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
S
SunAhong1993 已提交
620
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
621
                    "paddle.scale",
S
SunAhong1993 已提交
622 623
                    inputs={"x": input0_name},
                    outputs=[node.layer_name + '_mul0'],
S
SunAhong1993 已提交
624
                    scale=coeff[0])
S
SunAhong1993 已提交
625
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
626
                    "paddle.scale",
S
SunAhong1993 已提交
627 628
                    inputs={"x": input1_name},
                    outputs=[node.layer_name + '_mul1'],
S
SunAhong1993 已提交
629
                    scale=coeff[2])
S
SunAhong1993 已提交
630 631 632
                inputs_dict = {}
                inputs_dict['x'] = node.layer_name + '_mul0'
                inputs_dict['y'] = node.layer_name + '_mul1'
S
SunAhong1993 已提交
633
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
634 635 636 637 638 639 640
                    "paddle.add",
                    inputs=inputs_dict,
                    outputs=[node.layer_name])
            else:
                inputs_dict = {}
                inputs_dict['x'] = input0_name
                inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
641
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
642 643 644 645 646 647 648
                    "paddle.add",
                    inputs=inputs_dict,
                    outputs=[node.layer_name])
        else:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
649
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
650 651 652 653 654
                "paddle.max",
                inputs=inputs_dict,
                outputs=[node.layer_name])

    def BatchNorm(self, node):
S
SunAhong1993 已提交
655
        batchnorm_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
656 657 658 659
        output_name = node.layer_name
        layer_outputs = [batchnorm_name, output_name]
        assert len(
            node.inputs) == 1, "The count of BatchNorm node\'s input is not 1."
S
SunAhong1993 已提交
660
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
661 662 663 664 665 666 667 668 669
        params = node.layer.batch_norm_param
        if hasattr(params, "eps"):
            eps = params.eps
        else:
            eps = 1e-5
        if node.data is None or len(node.data) != 3:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
670 671
            mean = np.zeros([node.in_shapes[0][1], ]).astype("float32")
            variance = np.zeros([node.in_shapes[0][1], ]).astype("float32")
S
SunAhong1993 已提交
672 673 674 675 676 677 678 679 680 681 682 683
            scale = 0
        else:

            node.data = [np.squeeze(i).astype("float32") for i in node.data]
            mean, variance, scale = node.data
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.params[batchnorm_name + "._mean"] = mean
        self.params[batchnorm_name + '._variance'] = variance
        layer_attrs = {
S
SunAhong1993 已提交
684
            "num_features": node.in_shapes[0][1],
S
SunAhong1993 已提交
685 686 687 688
            "epsilon": eps,
            "weight_attr": False,
            "bias_attr": False,
        }
S
SunAhong1993 已提交
689
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
690
            "paddle.nn.BatchNorm2D",
S
SunAhong1993 已提交
691
            inputs={"input": input.name},
S
SunAhong1993 已提交
692 693 694 695 696 697 698 699
            outputs=layer_outputs,
            **layer_attrs)
   
    def Scale(self, node):
        if node.data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
700
            self.params[node.layer_name + "_cparam1"] = np.zeros([
S
SunAhong1993 已提交
701
                node.in_shapes[0][1],
S
SunAhong1993 已提交
702
            ]).astype("float32")
S
SunAhong1993 已提交
703
            self.params[node.layer_name + "_cparam2"] = np.zeros([
S
SunAhong1993 已提交
704
                node.in_shapes[0][1],
S
SunAhong1993 已提交
705 706
            ]).astype("float32")
        else:
S
SunAhong1993 已提交
707
            self.params[node.layer_name + "_cparam1"] = np.squeeze(node.data[
S
SunAhong1993 已提交
708
                0]).astype("float32")
S
SunAhong1993 已提交
709
            self.params[node.layer_name + "_cparam2"] = np.squeeze(node.data[
S
SunAhong1993 已提交
710 711 712 713 714
                1]).astype("float32")
        params = node.layer.scale_param
        axis = params.axis
        inputs = []
        if len(node.inputs) == 2:
S
SunAhong1993 已提交
715 716 717 718
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input1 = self.graph.get_input_node(node, idx=1, copy=True)
            input0_name = input0.name
            input1_name = input1.name
S
SunAhong1993 已提交
719 720 721
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
722
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
723 724 725 726 727
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"],
                axis=1)
        else:
S
SunAhong1993 已提交
728 729
            self.paddle_graph.add_layer(
                "self.create_parameter",
S
SunAhong1993 已提交
730 731
                inputs={},
                outputs=[node.layer_name + "_cparam1"],
S
SunAhong1993 已提交
732 733
                shape=self.params[node.layer_name + "_cparam1"].shape,
                attr=string(node.layer_name + "_cparam1"))
S
SunAhong1993 已提交
734 735
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input0_name = input0.name
S
SunAhong1993 已提交
736 737 738
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = node.layer_name + "_cparam1"
S
SunAhong1993 已提交
739
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
740 741 742 743
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"],
                axis=axis)
S
SunAhong1993 已提交
744 745 746 747 748 749
        self.paddle_graph.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[node.layer_name + "_cparam2"],
            shape=self.params[node.layer_name + "_cparam2"].shape,
            attr=string(node.layer_name + "_cparam2"))
S
SunAhong1993 已提交
750 751 752
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = node.layer_name + "_cparam2"
S
SunAhong1993 已提交
753
        output_shape = node.out_shapes[0]
S
SunAhong1993 已提交
754 755 756 757 758 759 760 761 762 763 764
        if axis == -1:
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs=inputs_dict,
                outputs=[node.layer_name])
        else:
            if axis < 0:
                axis = axis + len(output_shape)
            param2_shape = self.params[node.layer_name + "_cparam2"].shape
            param2_shape_len = len(param2_shape)
            diff_len = len(output_shape) - axis - param2_shape_len
S
SunAhong1993 已提交
765
            new_shape = list(param2_shape) + [1] * diff_len
S
SunAhong1993 已提交
766 767 768 769 770 771 772 773 774 775
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.layer_name + "_cparam2"},
                outputs=[node.layer_name + "_cparam2"],
                shape=new_shape)
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs=inputs_dict,
                outputs=[node.layer_name])
            
S
SunAhong1993 已提交
776
    def Reshape(self, node):
S
SunAhong1993 已提交
777 778
        input = self.graph.get_input_node(node, idx=0, copy=True)
        output_shape = node.out_shapes[0]
S
SunAhong1993 已提交
779
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
780
            "paddle.reshape",
S
SunAhong1993 已提交
781
            inputs={"x": input.name},
S
SunAhong1993 已提交
782
            outputs=[node.layer_name],
S
SunAhong1993 已提交
783
            shape=output_shape)
S
SunAhong1993 已提交
784 785 786 787 788 789


    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of ArgMax node\'s input and output is not 1."
S
SunAhong1993 已提交
790 791
        input = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
792 793 794 795 796 797 798 799
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
        axis = parmas.axis if hasattr(params, axis) else -1
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
S
SunAhong1993 已提交
800
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
801
                "paddle.topk",
S
SunAhong1993 已提交
802
                inputs={"x": input.name},
S
SunAhong1993 已提交
803 804
                outputs=[node.layer_name + "_topk_var", node.layer_name + "_index_var"],
                k=top_k)
S
SunAhong1993 已提交
805
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
806 807 808 809
                "paddle.cast",
                inputs={"x": node.layer_name + "_index_var"},
                outputs=[node.layer_name + "_index_var"],
                dtype="{}_topk_var.dtype".format(node.layer_name))
S
SunAhong1993 已提交
810
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
811
                "paddle.concat",
S
SunAhong1993 已提交
812
                inputs={"x": [node.layer_name + "_topk_var", node.layer_name + "_index_var"]},
S
SunAhong1993 已提交
813 814 815
                outputs=[node.layer_name],
                axis=axis)
        else:
S
SunAhong1993 已提交
816
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
817
                "paddle.topk",
S
SunAhong1993 已提交
818
                inputs={"x": input.name},
S
SunAhong1993 已提交
819 820 821 822 823 824 825
                outputs=["_", node.layer_name],
                k=top_k)
            
    def Axpy(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of Axpy node\'s input and output is not 1."
S
SunAhong1993 已提交
826
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
827
        params = node.layer.axpy_param
S
SunAhong1993 已提交
828 829 830 831 832 833
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
        input2 = self.graph.get_input_node(node, idx=2, copy=True)
        input0_name = input0.name
        input1_name = input1.name
        input2_name = input2.name
S
SunAhong1993 已提交
834 835 836
        inputs_dict = {}
        inputs_dict['x'] = input1_name
        inputs_dict['y'] = input0_name
S
SunAhong1993 已提交
837
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
838 839 840 841 842 843 844
            "paddle.multiply",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"],
            axis=0)
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = input2_name
S
SunAhong1993 已提交
845
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
846 847 848 849 850 851 852 853
            "paddle.add",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"])
        

    def Crop(self, node):
        assert len(
            node.inputs) == 2, "The count of Crop node\'s input is not 2."
S
SunAhong1993 已提交
854 855
        input = self.graph.get_input_node(node, idx=0, copy=True)
        example = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
856 857
        params = node.layer.crop_param
        axis = params.axis
S
SunAhong1993 已提交
858
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
859 860 861 862 863 864 865 866 867
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
        if hasattr(params, "offset") and len(params.offset) > 0:
            offset = list(params.offset)
            assert (len(input_shape) - axis
                    ) == len(offset), "invalid offset[%s] in crop layer" % (
                        str(offset))
            offset_real = [0] * axis + offset
S
SunAhong1993 已提交
868
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
869
                "paddle.crop",
S
SunAhong1993 已提交
870
                inputs={"x": input.name},
S
SunAhong1993 已提交
871
                outputs=[node.layer_name],
S
SunAhong1993 已提交
872
                shape=node.in_shapes[1],
S
SunAhong1993 已提交
873 874 875 876 877 878
                offsets=list(offset_real))

    def Flatten(self, node):
        assert len(
            node.
            inputs) == 1, "The count of DetectionOutput node\'s input is not 1."
S
SunAhong1993 已提交
879
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
880
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
881
            "paddle.reshape",
S
SunAhong1993 已提交
882
            inputs={"x": input.name},
S
SunAhong1993 已提交
883
            outputs=[node.layer_name],
S
SunAhong1993 已提交
884
            shape=node.out_shapes[0])
S
SunAhong1993 已提交
885 886 887 888

    def Power(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
S
SunAhong1993 已提交
889
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
890 891 892 893 894 895
        params = node.layer.power_param
        layer_attrs = {
            'scale': params.scale,
            'bias': params.shift,
            'bias_after_scale': True
        }
S
SunAhong1993 已提交
896
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
897
            "paddle.scale",
S
SunAhong1993 已提交
898
            inputs={"x": input.name},
S
SunAhong1993 已提交
899 900
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
901
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
902 903 904 905 906 907 908 909
            "paddle.pow",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            exponent=params.power)

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, "The count of Reduction node\'s input is not 1."
S
SunAhong1993 已提交
910
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
911 912 913 914 915 916
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
S
SunAhong1993 已提交
917
        input_len = len(node.in_shapes[0])
S
SunAhong1993 已提交
918 919 920 921 922 923 924 925 926
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        # operation = SUM
        if operation == 1:  
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
927
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
928
                "paddle.sum",
S
SunAhong1993 已提交
929
                inputs={"input": input.name},
S
SunAhong1993 已提交
930 931 932 933
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = ASUM
        elif operation == 2:  
S
SunAhong1993 已提交
934
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
935
                "paddle.abs",
S
SunAhong1993 已提交
936
                inputs={"x": input.name},
S
SunAhong1993 已提交
937 938 939 940 941
                outputs=[node.layer_name])
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
942
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
943 944 945 946 947 948
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = SUMSQ
        elif operation == 3: 
S
SunAhong1993 已提交
949
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
950
                "paddle.pow",
S
SunAhong1993 已提交
951
                inputs={"x": input.name},
S
SunAhong1993 已提交
952 953 954 955 956 957
                outputs=[node.layer_name],
                exponent=2.0)
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
958
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
959 960 961 962 963 964 965 966 967 968
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = MEAN
        else: 
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
969
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
970
                "paddle.mean",
S
SunAhong1993 已提交
971
                inputs={"input": input.name},
S
SunAhong1993 已提交
972 973
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
974
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
975 976 977 978 979 980
            "paddle.scale",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            scale=coeff)
        
    def DetectionOutput(self, node):
S
SunAhong1993 已提交
981 982 983
        detection_output_name = name_generator("detection_output", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [detection_output_name, output_name]
S
SunAhong1993 已提交
984 985
        assert len(
            node.inputs) == 3, "The count of DetectionOutput node\'s input is not 3."
S
SunAhong1993 已提交
986
        inputs_dict = dict()
S
SunAhong1993 已提交
987
        for i in range(len(node.inputs)):
S
SunAhong1993 已提交
988
            input = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
989
            if i == 1:
S
SunAhong1993 已提交
990
                input = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
991 992 993
                while input is not None \
                      and input.layer_type != 'Softmax' \
                      and input.layer_type != 'Sigmoid':
S
SunAhong1993 已提交
994
                    input = self.graph.get_input_node(input, idx=0, copy=True)
S
SunAhong1993 已提交
995
                assert input is not None, 'This kind of DetectionOutput is not supported!'
S
SunAhong1993 已提交
996 997
                input = self.graph.get_input_node(input, idx=0, copy=True)
            inputs_dict["x{}".format(i)] = input.name
S
SunAhong1993 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        params = node.layer.detection_output_param
        nms_param = params.nms_param
        nms_param_dict = dict()
        nms_param_dict["nms_threshold"] = nms_param.nms_threshold
        nms_param_dict["top_k"] = nms_param.top_k
        nms_param_dict["eta"] = nms_param.eta
        if nms_param is None:
            nms_param_dict = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        fields = ["eta", "top_k", "nms_threshold"]
        for f in default.keys():
            if f not in nms_param_dict:
                nms_param_dict[f] = default[f]
        layer_attrs = {
            "background_label": params.background_label_id,
            "nms_threshold": nms_param_dict["nms_threshold"],
            "nms_top_k": nms_param_dict["top_k"],
            "keep_top_k": params.keep_top_k,
            "score_threshold": params.confidence_threshold,
            "nms_eta": nms_param_dict["eta"]}
S
SunAhong1993 已提交
1018 1019
        self.paddle_graph.add_layer(
            kernel="custom_layer:DetectionOutput",
S
SunAhong1993 已提交
1020
            inputs=inputs_dict,
S
SunAhong1993 已提交
1021
            outputs=layer_outputs,
S
SunAhong1993 已提交
1022 1023 1024
            **layer_attrs)
                    
    def Normalize(self, node):
S
SunAhong1993 已提交
1025 1026 1027
        normalize_name = name_generator("normalize", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [normalize_name, output_name]
S
SunAhong1993 已提交
1028 1029
        assert len(
            node.inputs) == 1, "The count of Normalize node\'s input is not 1."
S
SunAhong1993 已提交
1030
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1031 1032 1033 1034 1035 1036
        params = node.layer.norm_param
        if node.data is None or len(node.data) != 1:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            self.parmas[node.layer_name + ".scale"] = \
S
SunAhong1993 已提交
1037
                np.zeros([1] if params.channel_shared else [1, 1, 1, node.in_shapes[0][1]]).astype("float32")
S
SunAhong1993 已提交
1038
        else:
S
SunAhong1993 已提交
1039
            self.parmas[node.layer_name + ".scale"] = _adjust_parameters(node)[0]
S
SunAhong1993 已提交
1040 1041 1042 1043 1044 1045 1046
        
        layer_attrs = {
            "axis": -1 if params.channel_shared else 1,
            "param_name": node.layer_name + ".scale",
            "param_shape": self.parmas[node.layer_name + ".scale"].shape}
        self.pd_pdgraph.add_layer(
            "custom_layer:Normalize",
S
SunAhong1993 已提交
1047
            inputs={"x": input.name},
S
SunAhong1993 已提交
1048 1049
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
1050 1051 1052 1053
        
    def Permute(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
S
SunAhong1993 已提交
1054
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1055 1056
        params = node.layer.permute_param
        order = list(params.order)    
S
SunAhong1993 已提交
1057
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1058
            "paddle.transpose",
S
SunAhong1993 已提交
1059
            inputs={"x": input.name},
S
SunAhong1993 已提交
1060 1061 1062 1063
            outputs=[node.layer_name],
            perm=order)
        
    def PriorBox(self, node):
S
SunAhong1993 已提交
1064 1065 1066
        priorbox_name = name_generator("priorbox", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [priorbox_name, output_name]
S
SunAhong1993 已提交
1067 1068
        assert len(
            node.inputs) == 2, "The count of PriorBox node\'s input is not 2."
S
SunAhong1993 已提交
1069 1070
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1071
        inputs_dict = {}
S
SunAhong1993 已提交
1072 1073
        inputs_dict["x0"] = input0.name
        inputs_dict["x1"] = input1.name
S
SunAhong1993 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        params = node.layer.prior_box_param
        steps = tuple(params.step) if type(params.step) \
                is list or type(params.step) is tuple \
                else (params.step, params.step)
        layer_attrs = {
            "min_sizes": params.min_size,
            "max_sizes": params.max_size,
            "aspect_ratios": params.aspect_ratio,
            "variance": params.variance,
            "flip": params.flip,
            "clip": params.clip,
            "steps": steps,
            "offset": params.offset,
            "min_max_aspect_ratios_order": True}
S
SunAhong1993 已提交
1088 1089
        self.paddle_graph.add_layer(
            "custom_layer:PriorBox",
S
SunAhong1993 已提交
1090
            inputs=inputs_dict,
S
SunAhong1993 已提交
1091
            outputs=layer_outputs,
S
SunAhong1993 已提交
1092
            **layer_attrs)
S
SunAhong1993 已提交
1093
        
S
SunAhong1993 已提交
1094
    def ReLU6(self, node):
S
SunAhong1993 已提交
1095
        relu6_name = name_generator("relu6", self.nn_name2id)
S
SunAhong1993 已提交
1096 1097 1098 1099
        output_name = node.layer_name
        layer_outputs = [relu6_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU6 node\'s input is not 1."
S
SunAhong1993 已提交
1100
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1101
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1102
            "paddle.nn.ReLU6",
S
SunAhong1993 已提交
1103
            inputs={"input": input.name},
S
SunAhong1993 已提交
1104 1105 1106
            outputs=layer_outputs)
        
    def ROIPooling(self, node):
S
SunAhong1993 已提交
1107 1108 1109
        roipooling_name = name_generator("roipooling", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [roipooling_name, output_name]
S
SunAhong1993 已提交
1110 1111
        assert len(
            node.inputs) == 2, "The count of ROIPooling node\'s input is not 2."
S
SunAhong1993 已提交
1112 1113
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1114
        inputs_dict = {}
S
SunAhong1993 已提交
1115 1116
        inputs_dict["x0"] = input0.name
        inputs_dict["x1"] = input1.name
S
SunAhong1993 已提交
1117 1118 1119 1120 1121
        params = node.layer.roi_pooling_param
        layer_attrs = {
            "pooled_height": params.pooled_h,
            "pooled_width": params.pooled_w,
            "spatial_scale": params.spatial_scale}
S
SunAhong1993 已提交
1122
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1123
            "custom_layer:roipooling",
S
SunAhong1993 已提交
1124
            inputs=inputs_dict,
S
SunAhong1993 已提交
1125
            outputs=layer_outputs,
S
SunAhong1993 已提交
1126 1127 1128 1129 1130
            **layer_attrs)
        
    def ShuffleChannel(self, node):
        assert len(
            node.inputs) == 1, "The count of ShuffleChannel node\'s input is not 1."
S
SunAhong1993 已提交
1131
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1132
        params = node.layer.shuffle_channel_param
S
SunAhong1993 已提交
1133
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1134
            "fluid.layers.shuffle_channel",
S
SunAhong1993 已提交
1135
            inputs={"x": input.name},
S
SunAhong1993 已提交
1136 1137 1138 1139 1140 1141
            outputs=[node.layer_name],
            group=params.group)
        
    def Upsample(self, node):
        assert len(
            node.inputs) == 1, "The count of Upsample node\'s input is not 1."
S
SunAhong1993 已提交
1142
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1143 1144 1145 1146 1147
        params = node.layer.upsample_param
        layer_attrs = {
            "align_corners": False,
            "scale_factor": params.scale,
            "mode": "nearest"}
S
SunAhong1993 已提交
1148
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1149
            "paddle.nn.functioanl.interpolate",
S
SunAhong1993 已提交
1150
            inputs={"input": input.name},
S
SunAhong1993 已提交
1151 1152 1153 1154
            outputs=[node.layer_name],
            **layer_attrs)
    
    def Select(self, node):
S
SunAhong1993 已提交
1155 1156 1157
        select_name = name_generator("select", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [select_name, output_name]
S
SunAhong1993 已提交
1158 1159
        assert len(
            node.inputs) == 1, "The count of Select node\'s input is not 1."
S
SunAhong1993 已提交
1160 1161
        input = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
1162 1163 1164 1165 1166
        params = node.layer.select_param
        layer_attrs = {
            "input_shape": input_shape,
            "point": params.slice_point,
            "axis": params.axis}
S
SunAhong1993 已提交
1167 1168
        self.paddle_graph.add_layer(
            "custom_layer:Select",
S
SunAhong1993 已提交
1169
            inputs={"x": input.name},
S
SunAhong1993 已提交
1170
            outputs=layer_outputs,
S
SunAhong1993 已提交
1171 1172 1173
            **layer_attrs)
        

S
SunAhong1993 已提交
1174
    
S
SunAhong1993 已提交
1175