caffe_op_mapper.py 47.3 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numbers
import numpy as np
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
from x2paddle.op_mapper.dygraph.caffe2paddle import caffe_shape
from x2paddle.core.program import PaddleGraph 


class CaffeOpMapper(OpMapper):
    directly_map_ops = {
        'Sigmoid': 'paddle.nn.layer.Sigmoid',
        'TanH': 'paddle.nn.Tanh',
    }

    def __init__(self, decoder):
        super(CaffeOpMapper, self).__init__()
        self.graph = decoder.caffe_graph
        self.params = dict()
S
SunAhong1993 已提交
33 34
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="dygraph", source_type="caffe")
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        self.input_index = 0 
        self.inputs_info = {}
        self.nn_name2id = {}
        print("Total nodes: {}".format(len(self.graph.topo_sort)))
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            if node.layer_type == 'DepthwiseConvolution':
                node.layer_type = 'ConvolutionDepthwise'
            op = node.layer_type
            if hasattr(self, op):
                self.set_node_shape(node)
                func = getattr(self, op)
                func(node)
            elif op in self.directly_map_ops:
                self.set_node_shape(node)
                self.directly_map(node)
            else:
                raise Exception(
                    "The op {} in model is not supported yet.".format(op))
S
SunAhong1993 已提交
54 55 56
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
SunAhong1993 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and op not in custom_layers:
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

    def set_node_shape(self, node):
        inputs = node.inputs
        input_shape = []
        for i, nm in enumerate(inputs):
            last_node = self.graph.get_node(nm)
            tmp = node.layer.bottom[i]
            idx = list(last_node.layer.top).index(tmp)
            input_shape.append(last_node.output_shape[idx])

        node.input_shape = input_shape

        func_name = 'shape_' + node.layer_type.lower()
S
SunAhong1993 已提交
86 87
        node.output_shape = getattr(caffe_shape, func_name)(node.layer,
                                                            input_shape)
S
SunAhong1993 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    def adjust_parameters(self, node):
        data = node.data
        # When using the protobuf-backend, each parameter initially has four dimensions.
        # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
        # This implementation takes care of the common cases. However, it does leave the
        # potential for future issues.
        # The Caffe-backend does not suffer from this problem.
        data = list(data)

        squeeze_indices = [1]  # Squeeze biases.
        if node.layer_type == 'InnerProduct':
            squeeze_indices.append(0)  # Squeeze FC.

        for idx in squeeze_indices:
            if idx >= len(data):
                continue

            d = data[idx]
            assert len(
                d.shape
            ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
                str(d.shape))

            shape_old = d.shape
            sq_axis = None
            if idx == 0:
                sq_axis = (0, 1)
            elif idx == 1:
                sq_axis = (0, 1, 2)
            else:
                continue

            data[idx] = np.squeeze(d, axis=sq_axis)
            shape_new = data[idx].shape
        return data

    def get_kernel_parameters(self, kind, params):
        assert kind in ["Convolution", "Pooling", "Deconvolution", "ConvolutionDepthwise"]
        [k_h, k_w] = [1, 1]
        if isinstance(params.kernel_size, numbers.Number):
            [k_h, k_w] = [params.kernel_size] * 2
        elif len(params.kernel_size) > 0:
            k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[
                0]
            k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
                len(params.kernel_size) - 1]
        elif params.kernel_h > 0 or params.kernel_w > 0:
            k_h = params.kernel_h
            k_w = params.kernel_w
        [s_h, s_w] = [1, 1]
        if isinstance(params.stride, numbers.Number):
            [s_h, s_w] = [params.stride] * 2
        elif len(params.stride) > 0:
            s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
            s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
                params.stride) - 1]
        elif params.stride_h > 0 or params.stride_w > 0:
            s_h = params.stride_h
            s_w = params.stride_w
        [p_h, p_w] = [0, 0]
        if isinstance(params.pad, numbers.Number):
            [p_h, p_w] = [params.pad] * 2
        elif len(params.pad) > 0:
            p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
            p_w = params.pad_w if params.pad_w > 0 else params.pad[len(
                params.pad) - 1]
        elif params.pad_h > 0 or params.pad_w > 0:
            p_h = params.pad_h
            p_w = params.pad_w
        dila_h = dila_w = 1
        group = 1
        c_o = 1
        if kind in ["Convolution", "Deconvolution", "ConvolutionDepthwise"]:
            if kind in ["Convolution", "Deconvolution"]:
                c_o = params.num_output
            dila_len = len(params.dilation)
            if dila_len == 2:
                dila_h = params.dilation[0]
                dila_w = params.dilation[1]
            elif dila_len == 1:
                dila_h = dila_w = params.dilation[0]
            else:
                assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                    dila_len)
        if kind in ['Convolution', 'Deconvolution']:
            group = params.group
        kernel = [k_h, k_w]
        stride = [s_h, s_w]
        pad = [p_h, p_w]
        dilation = [dila_h, dila_w]
        return c_o, kernel, stride, pad, dilation, group

    def get_input_name(self, node):
        if hasattr(node, "index"):
S
SunAhong1993 已提交
183
            return "{}_{}".format(node.layer_name, node.index)
S
SunAhong1993 已提交
184 185 186 187
        else:
            return node.layer_name

    def Input(self, node):
S
SunAhong1993 已提交
188
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
189 190 191 192 193 194 195 196 197
            "paddle.to_tensor",
            inputs={},
            outputs=[node.layer_name],
            data="x{}".format(self.input_index))
        shape = list(node.layer.input_param.shape[0].dim)[1:]
        self.inputs_info["x{}".format(self.input_index)] = [[-1] + shape, "float32"]
        self.input_index += 1

    def Convolution(self, node):
S
SunAhong1993 已提交
198
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
        out_channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
                np.zeros([out_channel, node.input_shape[0][1], kernel[0], kernel[1]]).astype(
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
            data = self.adjust_parameters(node)
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Convolution node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        layer_attrs = {
            "in_channels": node.input_shape[0][1],
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
233
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
234 235 236 237 238 239
            "paddle.nn.Conv2D",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)

    def Deconvolution(self, node):
S
SunAhong1993 已提交
240
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
        out_channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
                np.zeros([out_channel, node.input_shape[0][1], kernel[0], kernel[1]]).astype(
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
            data = self.adjust_parameters(node)
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        layer_attrs = {
            "in_channels": node.input_shape[0][1],
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
275
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
276 277 278 279 280 281
            "paddle.nn.Conv2DTranspose",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)
        
    def ConvolutionDepthwise(self, node):
S
SunAhong1993 已提交
282
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
        out_channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        out_channel = params.num_output if params.num_output is not None else node.input_shape[0][1]
        in_channel = node.input_shape[0][1]
        group = int(in_channel / (in_channel / out_channel)) if in_channel > out_channel else int(in_channel /
                                                                (out_channel / in_channel))
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
                np.zeros([out_channel, node.input_shape[0][1], kernel[0], kernel[1]]).astype(
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
            data = self.adjust_parameters(node)
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        layer_attrs = {
            "in_channels": in_channel,
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
321
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
322 323 324 325 326 327
            "paddle.nn.Conv2D",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)

    def Pooling(self, node):
S
SunAhong1993 已提交
328
        pool2d_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        output_name = node.layer_name
        layer_outputs = [pool2d_name, output_name]
        params = node.layer.pooling_param
        ceil_mode = getattr(params, "ceil_mod", True)
        global_pool = getattr(params, "global_pooling", False)
        kernel_default = [1, 1]
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        if params.pool == 0:
            pool_type = "max"
        else:
            pool_type = "avg"
        assert len(
            node.inputs) == 1, "The count of Pooling node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
344 345 346 347
        if global_pool:
            if kernel[0] == 0:
                kernel = [1, 1]
            if params.pool == 0:
S
SunAhong1993 已提交
348
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
349 350 351 352 353
                    "paddle.nn.AdaptiveMaxPool2D",
                    inputs={"input": self.get_input_name(input)},
                    outputs=layer_outputs,
                    output_size=kernel)
            else:
S
SunAhong1993 已提交
354
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
355 356 357 358
                    "paddle.nn.AdaptiveAvgPool2D",
                    inputs={"input": self.get_input_name(input)},
                    outputs=layer_outputs,
                    output_size=kernel)
S
SunAhong1993 已提交
359
        else:
S
SunAhong1993 已提交
360 361 362 363 364 365 366 367 368
            layer_attrs = {
                'pool_size': kernel,
                'pool_stride': stride,
                'pool_padding': pad,
                'ceil_mode': ceil_mode,
                'pool_type': string(pool_type),
                'exclusive': False,
                'global_pooling': global_pool,
            }
S
SunAhong1993 已提交
369
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
370
                "paddle.fluid.dygraph.Pool2D",
S
SunAhong1993 已提交
371 372 373
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs,
                **layer_attrs)
S
SunAhong1993 已提交
374 375 376 377 378 379 380
#             layer_attrs = {
#                 'kernel_size': kernel,
#                 'stride': stride,
#                 'padding': pad,
#                 'ceil_mode': ceil_mode,
#             }
#             if params.pool == 0:
S
SunAhong1993 已提交
381
#                 self.paddle_graph.add_layer(
S
SunAhong1993 已提交
382 383 384 385 386 387
#                     "paddle.nn.MaxPool2D",
#                     inputs={"input": self.get_input_name(input)},
#                     outputs=layer_outputs,
#                     **layer_attrs)
#             else:
#                 layer_attrs["count_include_pad"] = True
S
SunAhong1993 已提交
388
#                 self.paddle_graph.add_layer(
S
SunAhong1993 已提交
389 390 391 392
#                     "paddle.nn.AvgPool2D",
#                     inputs={"input": self.get_input_name(input)},
#                     outputs=layer_outputs,
#                     **layer_attrs)
S
SunAhong1993 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405

    def LRN(self, node):
        assert len(node.inputs) == 1, "The count of LRN node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.lrn_param
        assert params.local_size % 2 == 1
        alpha = params.alpha / float(params.local_size)
        layer_attrs = {
            "n": params.local_size,
            "k": params.k,
            "alpha": alpha,
            "beta": params.beta,
        }
S
SunAhong1993 已提交
406
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
407 408 409 410 411 412
            "fluid.layers.lrn", 
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)

    def InnerProduct(self, node):
S
SunAhong1993 已提交
413
        linear_name = name_generator("linear", self.nn_name2id)
S
SunAhong1993 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        output_name = node.layer_name
        layer_outputs = [linear_name, output_name]
        data = node.data
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.inner_product_param
        if data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0."
                .format(node.layer_name, node.layer_type))
            data = []
            data.append(
                np.zeros([node.input_shape[0][1], params.num_output]).astype("float32").astype(
                    "float32"))
            data.append(
                np.zeros([params.num_output]).astype("float32").astype("float32"))
        else:
            data = self.adjust_parameters(node)
            # Reshape the parameters to Paddle's ordering
            transpose_order = (1, 0)
            w = data[0]
            fc_shape = w.shape
            output_channels = fc_shape[0]
            w = w.reshape((output_channels, -1))
            w = w.transpose(transpose_order)
            data[0] = w

        self.params[linear_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[linear_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of InnerProduct node\'s input is not 1."
        assert params.axis == 1
        assert params.bias_term == True
        layer_attrs = {
            "in_features": data[0].shape[0],
            "out_features": params.num_output           
        }
        if len(data) == 1:
            layer_attrs["bias"] = False
        if node.input_shape[0][-1] != data[0].shape[0]:
S
SunAhong1993 已提交
454
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
455 456 457 458
                "paddle.reshape",
                inputs={"x": self.get_input_name(input)},
                outputs=[output_name],
                shape=[-1, data[0].shape[0]])
S
SunAhong1993 已提交
459
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
460 461 462 463 464
                "paddle.nn.Linear",
                inputs={"input": output_name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
465
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
466 467 468 469 470 471 472 473 474 475
                "paddle.nn.Linear",
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs,
                **layer_attrs)
        
    def AbsVal(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of AbsVal node\'s input is not more than 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
476
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
477 478 479 480 481
            "paddle.abs",
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name])

    def Softmax(self, node):
S
SunAhong1993 已提交
482
        softmax_name = name_generator("softmax", self.nn_name2id)
S
SunAhong1993 已提交
483 484 485 486 487 488 489 490 491 492 493
        output_name = node.layer_name
        layer_outputs = [softmax_name, output_name]
        assert len(
            node.inputs) == 1, "The count of Softmax node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.softmax_param
        axis = params.axis
        shape = node.input_shape[0]
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
494
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
            "paddle.nn.Softmax",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)

    def Slice(self, node):
        assert len(
            node.inputs) == 1, "The count of Slice node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        top_len = len(node.layer.top)
        params = node.layer.slice_param
        axis = params.axis
        slice_dim = params.slice_dim
        if slice_dim != 1 and axis == 1:
            axis = slice_dim
        output_shape = node.output_shape
S
SunAhong1993 已提交
511 512 513
        sections_list = list()
        outputs_list = list()
        for i, s in enumerate(output_shape):
S
SunAhong1993 已提交
514
            sections_list.append(s[axis])
S
SunAhong1993 已提交
515
            outputs_list.append("{}_{}".format(node.layer_name, i))
S
SunAhong1993 已提交
516 517
        layer_attrs = {
            'num_or_sections': sections_list,
S
SunAhong1993 已提交
518
            'axis': axis,
S
SunAhong1993 已提交
519
        }
S
SunAhong1993 已提交
520
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
521
            "paddle.split",
S
SunAhong1993 已提交
522
            inputs={"x": self.get_input_name(input)},
S
SunAhong1993 已提交
523
            outputs=outputs_list,
S
SunAhong1993 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536
            **layer_attrs)

    def Concat(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of Concat node\'s input is not more than 1."
        inputs_dict = dict()
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
            inputs_dict["input{}".format(i)] = self.get_input_name(input)
        params = node.layer.concat_param
        axis = params.axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
537
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
538 539 540
            "prim.list",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_list"])
S
SunAhong1993 已提交
541
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
542 543 544 545 546 547
            "paddle.concat",
            inputs={"x": node.layer_name + "_list"},
            outputs=[node.layer_name],
            **layer_attrs)

    def ReLU(self, node):
S
SunAhong1993 已提交
548
        relu_name = name_generator("relu", self.nn_name2id)
S
SunAhong1993 已提交
549 550 551 552 553 554 555 556 557 558
        output_name = node.layer_name
        layer_outputs = [relu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.relu_param
        if params.HasField('negative_slope') and params.negative_slope != 0:
            negative_slope = float(params.negative_slope)

            layer_attrs = {'alpha': negative_slope}
S
SunAhong1993 已提交
559
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
560 561 562 563 564
                "paddle.nn.LeakyReLU",
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
565
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
566 567 568 569 570
                "paddle.nn.ReLU",
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs)

    def PReLU(self, node):
S
SunAhong1993 已提交
571
        prelu_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
        output_name = node.layer_name
        layer_outputs = [prelu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of PReLU node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
        output_shape = node.output_shape[0]
        if mode_bool:
            num_parameters = 1
        else:
            num_parameters = output_shape[1]
        data = node.data
        self.params[prelu_name + '._weight'] = np.squeeze(data[0])
        assert data is not None, "The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.".format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
588
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
            "paddle.nn.PReLU",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            num_parameters=num_parameters)

    def Eltwise(self, node):
        assert len(
            node.inputs) == 2, "The count of Eltwise node\'s input is not 2."
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        input0_name = self.get_input_name(input0)
        input1_name = self.get_input_name(input1)
        if mode == 0:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
608
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
609 610 611 612 613 614
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name])
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
S
SunAhong1993 已提交
615
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
616 617 618 619
                    "prim.mul",
                    inputs={"x": input0_name},
                    outputs=[node.layer_name + '_mul0'],
                    y=coeff[0])
S
SunAhong1993 已提交
620
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
621 622 623 624 625 626 627
                    "prim.mul",
                    inputs={"x": input1_name},
                    outputs=[node.layer_name + '_mul1'],
                    y=coeff[2])
                inputs_dict = {}
                inputs_dict['x'] = node.layer_name + '_mul0'
                inputs_dict['y'] = node.layer_name + '_mul1'
S
SunAhong1993 已提交
628
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
629 630 631 632 633 634 635
                    "paddle.add",
                    inputs=inputs_dict,
                    outputs=[node.layer_name])
            else:
                inputs_dict = {}
                inputs_dict['x'] = input0_name
                inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
636
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
637 638 639 640 641 642 643
                    "paddle.add",
                    inputs=inputs_dict,
                    outputs=[node.layer_name])
        else:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
644
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
645 646 647 648 649
                "paddle.max",
                inputs=inputs_dict,
                outputs=[node.layer_name])

    def BatchNorm(self, node):
S
SunAhong1993 已提交
650
        batchnorm_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
        output_name = node.layer_name
        layer_outputs = [batchnorm_name, output_name]
        assert len(
            node.inputs) == 1, "The count of BatchNorm node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.batch_norm_param
        if hasattr(params, "eps"):
            eps = params.eps
        else:
            eps = 1e-5
        if node.data is None or len(node.data) != 3:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            mean = np.zeros([node.input_shape[0][1], ]).astype("float32")
            variance = np.zeros([node.input_shape[0][1], ]).astype("float32")
            scale = 0
        else:

            node.data = [np.squeeze(i).astype("float32") for i in node.data]
            mean, variance, scale = node.data
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.params[batchnorm_name + "._mean"] = mean
        self.params[batchnorm_name + '._variance'] = variance
        layer_attrs = {
            "num_features": node.input_shape[0][1],
            "epsilon": eps,
            "weight_attr": False,
            "bias_attr": False,
        }
S
SunAhong1993 已提交
684
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
685 686 687 688 689 690 691 692 693 694
            "paddle.nn.BatchNorm2D",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)
   
    def Scale(self, node):
        if node.data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
695
            self.params[node.layer_name + "_cparam1"] = np.zeros([
S
SunAhong1993 已提交
696 697
                node.input_shape[0][1],
            ]).astype("float32")
S
SunAhong1993 已提交
698
            self.params[node.layer_name + "_cparam2"] = np.zeros([
S
SunAhong1993 已提交
699 700 701
                node.input_shape[0][1],
            ]).astype("float32")
        else:
S
SunAhong1993 已提交
702
            self.params[node.layer_name + "_cparam1"] = np.squeeze(node.data[
S
SunAhong1993 已提交
703
                0]).astype("float32")
S
SunAhong1993 已提交
704
            self.params[node.layer_name + "_cparam2"] = np.squeeze(node.data[
S
SunAhong1993 已提交
705 706 707 708 709 710 711 712 713 714 715 716
                1]).astype("float32")
        params = node.layer.scale_param
        axis = params.axis
        inputs = []
        if len(node.inputs) == 2:
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
            input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
            input0_name = self.get_input_name(input0)
            input1_name = self.get_input_name(input1)
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
717
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
718 719 720 721 722
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"],
                axis=1)
        else:
S
SunAhong1993 已提交
723 724
            self.paddle_graph.add_layer(
                "self.create_parameter",
S
SunAhong1993 已提交
725 726
                inputs={},
                outputs=[node.layer_name + "_cparam1"],
S
SunAhong1993 已提交
727 728
                shape=self.params[node.layer_name + "_cparam1"].shape,
                attr=string(node.layer_name + "_cparam1"))
S
SunAhong1993 已提交
729 730 731 732 733
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
            input0_name = self.get_input_name(input0)
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = node.layer_name + "_cparam1"
S
SunAhong1993 已提交
734
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
735 736 737 738
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"],
                axis=axis)
S
SunAhong1993 已提交
739 740 741 742 743 744
        self.paddle_graph.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[node.layer_name + "_cparam2"],
            shape=self.params[node.layer_name + "_cparam2"].shape,
            attr=string(node.layer_name + "_cparam2"))
S
SunAhong1993 已提交
745 746 747
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = node.layer_name + "_cparam2"
S
SunAhong1993 已提交
748
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
749
            "fluid.layers.elementwise_add",
S
SunAhong1993 已提交
750 751 752 753 754 755 756
            inputs=inputs_dict,
            outputs=[node.layer_name],
            axis=axis)

    def Reshape(self, node):
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        output_shape = node.output_shape[0]
S
SunAhong1993 已提交
757
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
758 759 760
            "paddle.reshape",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
S
SunAhong1993 已提交
761
            shape=output_shape)
S
SunAhong1993 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777


    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of ArgMax node\'s input and output is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        input_shape = node.input_shape[0]
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
        axis = parmas.axis if hasattr(params, axis) else -1
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
S
SunAhong1993 已提交
778
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
779 780 781 782
                "paddle.topk",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name + "_topk_var", node.layer_name + "_index_var"],
                k=top_k)
S
SunAhong1993 已提交
783
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
784 785 786 787
                "paddle.cast",
                inputs={"x": node.layer_name + "_index_var"},
                outputs=[node.layer_name + "_index_var"],
                dtype="{}_topk_var.dtype".format(node.layer_name))
S
SunAhong1993 已提交
788
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
789 790 791 792
                "prim.list",
                inputs={"input0": node.layer_name + "_topk_var",
                        "input1": node.layer_name + "_index_var"},
                outputs=[node.layer_name + "_list"])
S
SunAhong1993 已提交
793
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
794 795 796 797 798
                "paddle.concat",
                inputs={"x": node.layer_name + "_list"},
                outputs=[node.layer_name],
                axis=axis)
        else:
S
SunAhong1993 已提交
799
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
                "paddle.topk",
                inputs={"x": self.get_input_name(input)},
                outputs=["_", node.layer_name],
                k=top_k)
            
    def Axpy(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of Axpy node\'s input and output is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.axpy_param
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        input2 = self.graph.get_bottom_node(node, idx=2, copy=True)
        input0_name = self.get_input_name(input0)
        input1_name = self.get_input_name(input1)
        input2_name = self.get_input_name(input2)
        inputs_dict = {}
        inputs_dict['x'] = input1_name
        inputs_dict['y'] = input0_name
S
SunAhong1993 已提交
820
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
821 822 823 824 825 826 827
            "paddle.multiply",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"],
            axis=0)
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = input2_name
S
SunAhong1993 已提交
828
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
            "paddle.add",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"])
        

    def Crop(self, node):
        assert len(
            node.inputs) == 2, "The count of Crop node\'s input is not 2."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        example = self.graph.get_bottom_node(node, idx=1, copy=True)
        params = node.layer.crop_param
        axis = params.axis
        input_shape = node.input_shape[0]
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
        if hasattr(params, "offset") and len(params.offset) > 0:
            offset = list(params.offset)
            assert (len(input_shape) - axis
                    ) == len(offset), "invalid offset[%s] in crop layer" % (
                        str(offset))
            offset_real = [0] * axis + offset
S
SunAhong1993 已提交
851
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
852 853 854 855 856 857 858 859 860 861 862
                "paddle.crop",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name],
                shape=node.input_shape[1],
                offsets=list(offset_real))

    def Flatten(self, node):
        assert len(
            node.
            inputs) == 1, "The count of DetectionOutput node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
863
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
            "paddle.reshape",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            shape=node.output_shape[0])

    def Power(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.power_param
        layer_attrs = {
            'scale': params.scale,
            'bias': params.shift,
            'bias_after_scale': True
        }
S
SunAhong1993 已提交
879
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
880 881 882 883
            "paddle.scale",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
884
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
            "paddle.pow",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            exponent=params.power)

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, "The count of Reduction node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
        input_len = len(node.input_shape[0])
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        # operation = SUM
        if operation == 1:  
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
910
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
911 912 913 914 915 916
                "paddle.sum",
                inputs={"input": self.get_input_name(input)},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = ASUM
        elif operation == 2:  
S
SunAhong1993 已提交
917
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
918 919 920 921 922 923 924
                "paddle.abs",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name])
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
925
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
926 927 928 929 930 931
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = SUMSQ
        elif operation == 3: 
S
SunAhong1993 已提交
932
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
933 934 935 936 937 938 939 940
                "paddle.pow",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name],
                exponent=2.0)
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
941
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
942 943 944 945 946 947 948 949 950 951
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = MEAN
        else: 
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
952
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
953 954 955 956
                "paddle.mean",
                inputs={"input": self.get_input_name(input)},
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
957
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
958 959 960 961 962 963
            "paddle.scale",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            scale=coeff)
        
    def DetectionOutput(self, node):
S
SunAhong1993 已提交
964 965 966
        detection_output_name = name_generator("detection_output", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [detection_output_name, output_name]
S
SunAhong1993 已提交
967 968
        assert len(
            node.inputs) == 3, "The count of DetectionOutput node\'s input is not 3."
S
SunAhong1993 已提交
969
        inputs_dict = dict()
S
SunAhong1993 已提交
970 971 972 973 974 975 976 977 978 979
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
            if i == 1:
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
                while input is not None \
                      and input.layer_type != 'Softmax' \
                      and input.layer_type != 'Sigmoid':
                    input = self.graph.get_bottom_node(input, idx=0, copy=True)
                assert input is not None, 'This kind of DetectionOutput is not supported!'
                input = self.graph.get_bottom_node(input, idx=0, copy=True)
S
SunAhong1993 已提交
980
            inputs_dict["x{}".format(i)] = self.get_input_name(input)
S
SunAhong1993 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        params = node.layer.detection_output_param
        nms_param = params.nms_param
        nms_param_dict = dict()
        nms_param_dict["nms_threshold"] = nms_param.nms_threshold
        nms_param_dict["top_k"] = nms_param.top_k
        nms_param_dict["eta"] = nms_param.eta
        if nms_param is None:
            nms_param_dict = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        fields = ["eta", "top_k", "nms_threshold"]
        for f in default.keys():
            if f not in nms_param_dict:
                nms_param_dict[f] = default[f]
        layer_attrs = {
            "background_label": params.background_label_id,
            "nms_threshold": nms_param_dict["nms_threshold"],
            "nms_top_k": nms_param_dict["top_k"],
            "keep_top_k": params.keep_top_k,
            "score_threshold": params.confidence_threshold,
            "nms_eta": nms_param_dict["eta"]}
S
SunAhong1993 已提交
1001 1002
        self.paddle_graph.add_layer(
            kernel="custom_layer:DetectionOutput",
S
SunAhong1993 已提交
1003
            inputs=inputs_dict,
S
SunAhong1993 已提交
1004
            outputs=layer_outputs,
S
SunAhong1993 已提交
1005 1006 1007
            **layer_attrs)
                    
    def Normalize(self, node):
S
SunAhong1993 已提交
1008 1009 1010
        normalize_name = name_generator("normalize", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [normalize_name, output_name]
S
SunAhong1993 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        assert len(
            node.inputs) == 1, "The count of Normalize node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.norm_param
        if node.data is None or len(node.data) != 1:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            self.parmas[node.layer_name + ".scale"] = \
                np.zeros([1] if params.channel_shared else [1, 1, 1, node.input_shape[0][1]]).astype("float32")
        else:
            self.parmas[node.layer_name + ".scale"] = self.adjust_parameters(node)[0]
S
SunAhong1993 已提交
1023 1024 1025 1026 1027 1028 1029
        
        layer_attrs = {
            "axis": -1 if params.channel_shared else 1,
            "param_name": node.layer_name + ".scale",
            "param_shape": self.parmas[node.layer_name + ".scale"].shape}
        self.pd_pdgraph.add_layer(
            "custom_layer:Normalize",
S
SunAhong1993 已提交
1030
            inputs={"x": self.get_input_name(input)},
S
SunAhong1993 已提交
1031 1032
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
1033 1034 1035 1036 1037 1038 1039
        
    def Permute(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.permute_param
        order = list(params.order)    
S
SunAhong1993 已提交
1040
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1041 1042 1043 1044 1045 1046
            "paddle.transpose",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            perm=order)
        
    def PriorBox(self, node):
S
SunAhong1993 已提交
1047 1048 1049
        priorbox_name = name_generator("priorbox", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [priorbox_name, output_name]
S
SunAhong1993 已提交
1050 1051 1052 1053 1054
        assert len(
            node.inputs) == 2, "The count of PriorBox node\'s input is not 2."
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        inputs_dict = {}
S
SunAhong1993 已提交
1055 1056
        inputs_dict["x0"] = self.get_input_name(input0)
        inputs_dict["x1"] = self.get_input_name(input1)
S
SunAhong1993 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
        params = node.layer.prior_box_param
        steps = tuple(params.step) if type(params.step) \
                is list or type(params.step) is tuple \
                else (params.step, params.step)
        layer_attrs = {
            "min_sizes": params.min_size,
            "max_sizes": params.max_size,
            "aspect_ratios": params.aspect_ratio,
            "variance": params.variance,
            "flip": params.flip,
            "clip": params.clip,
            "steps": steps,
            "offset": params.offset,
            "min_max_aspect_ratios_order": True}
S
SunAhong1993 已提交
1071 1072
        self.paddle_graph.add_layer(
            "custom_layer:PriorBox",
S
SunAhong1993 已提交
1073
            inputs=inputs_dict,
S
SunAhong1993 已提交
1074
            outputs=layer_outputs,
S
SunAhong1993 已提交
1075
            **layer_attrs)
S
SunAhong1993 已提交
1076
        
S
SunAhong1993 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    def ReLU6(self, node):
        if "relu6" in self.nn_name2id:
            self.nn_name2id["relu6"] += 1
        else:
            self.nn_name2id["relu6"] = 0
        relu6_name = "relu6" + str(self.nn_name2id["relu6"])
        output_name = node.layer_name
        layer_outputs = [relu6_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU6 node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1088
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1089 1090 1091 1092 1093
            "paddle.nn.ReLU6",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs)
        
    def ROIPooling(self, node):
S
SunAhong1993 已提交
1094 1095 1096
        roipooling_name = name_generator("roipooling", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [roipooling_name, output_name]
S
SunAhong1993 已提交
1097 1098 1099 1100 1101
        assert len(
            node.inputs) == 2, "The count of ROIPooling node\'s input is not 2."
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        inputs_dict = {}
S
SunAhong1993 已提交
1102 1103
        inputs_dict["x0"] = self.get_input_name(input0)
        inputs_dict["x1"] = self.get_input_name(input1)
S
SunAhong1993 已提交
1104 1105 1106 1107 1108
        params = node.layer.roi_pooling_param
        layer_attrs = {
            "pooled_height": params.pooled_h,
            "pooled_width": params.pooled_w,
            "spatial_scale": params.spatial_scale}
S
SunAhong1993 已提交
1109 1110
        self.paddle_graph.add_layer(
            "custom_layer:ROIPooling",
S
SunAhong1993 已提交
1111
            inputs=inputs_dict,
S
SunAhong1993 已提交
1112
            outputs=layer_outputs,
S
SunAhong1993 已提交
1113 1114 1115 1116 1117 1118 1119
            **layer_attrs)
        
    def ShuffleChannel(self, node):
        assert len(
            node.inputs) == 1, "The count of ShuffleChannel node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.shuffle_channel_param
S
SunAhong1993 已提交
1120
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            "fluid.layers.shuffle_channel",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            group=params.group)
        
    def Upsample(self, node):
        assert len(
            node.inputs) == 1, "The count of Upsample node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.upsample_param
        layer_attrs = {
            "align_corners": False,
            "scale_factor": params.scale,
            "mode": "nearest"}
S
SunAhong1993 已提交
1135
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1136 1137 1138 1139 1140 1141
            "paddle.nn.functioanl.interpolate",
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
    
    def Select(self, node):
S
SunAhong1993 已提交
1142 1143 1144
        select_name = name_generator("select", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [select_name, output_name]
S
SunAhong1993 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153
        assert len(
            node.inputs) == 1, "The count of Select node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        input_shape = node.input_shape[0]
        params = node.layer.select_param
        layer_attrs = {
            "input_shape": input_shape,
            "point": params.slice_point,
            "axis": params.axis}
S
SunAhong1993 已提交
1154 1155 1156 1157
        self.paddle_graph.add_layer(
            "custom_layer:Select",
            inputs={"x": self.get_input_name(input)},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            **layer_attrs)
        

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        prefix_name = node.layer_type.lower()
        if prefix_name in self.nn_name2id:
            self.nn_name2id[prefix_name] += 1
        else:
            self.nn_name2id[prefix_name] = 0
        first_output_name = prefix_name + str(self.nn_name2id[prefix_name])
        output_name = node.layer_name
        layer_outputs = [relu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of Activate node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1176
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1177 1178 1179 1180
            op_info,
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs)