caffe_op_mapper.py 47.8 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numbers
import numpy as np
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.util import *
from x2paddle.op_mapper.dygraph.caffe2paddle import caffe_shape
from x2paddle.core.program import PaddleGraph 


class CaffeOpMapper(OpMapper):
    directly_map_ops = {
        'Sigmoid': 'paddle.nn.layer.Sigmoid',
        'TanH': 'paddle.nn.Tanh',
    }

    def __init__(self, decoder):
        super(CaffeOpMapper, self).__init__()
        self.graph = decoder.caffe_graph
        self.params = dict()
S
SunAhong1993 已提交
33 34
        self.paddle_graph = PaddleGraph(parent_layer=None, graph_type="dygraph", source_type="caffe")
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        self.input_index = 0 
        self.inputs_info = {}
        self.nn_name2id = {}
        print("Total nodes: {}".format(len(self.graph.topo_sort)))
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            if node.layer_type == 'DepthwiseConvolution':
                node.layer_type = 'ConvolutionDepthwise'
            op = node.layer_type
            if hasattr(self, op):
                self.set_node_shape(node)
                func = getattr(self, op)
                func(node)
            elif op in self.directly_map_ops:
                self.set_node_shape(node)
                self.directly_map(node)
            else:
                raise Exception(
                    "The op {} in model is not supported yet.".format(op))
S
SunAhong1993 已提交
54 55 56
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
SunAhong1993 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
                
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if not hasattr(self, op) and op not in custom_layers:
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

    def set_node_shape(self, node):
        inputs = node.inputs
        input_shape = []
        for i, nm in enumerate(inputs):
            last_node = self.graph.get_node(nm)
            tmp = node.layer.bottom[i]
            idx = list(last_node.layer.top).index(tmp)
            input_shape.append(last_node.output_shape[idx])

        node.input_shape = input_shape

        func_name = 'shape_' + node.layer_type.lower()
S
SunAhong1993 已提交
86 87
        node.output_shape = getattr(caffe_shape, func_name)(node.layer,
                                                            input_shape)
S
SunAhong1993 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182

    def adjust_parameters(self, node):
        data = node.data
        # When using the protobuf-backend, each parameter initially has four dimensions.
        # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
        # This implementation takes care of the common cases. However, it does leave the
        # potential for future issues.
        # The Caffe-backend does not suffer from this problem.
        data = list(data)

        squeeze_indices = [1]  # Squeeze biases.
        if node.layer_type == 'InnerProduct':
            squeeze_indices.append(0)  # Squeeze FC.

        for idx in squeeze_indices:
            if idx >= len(data):
                continue

            d = data[idx]
            assert len(
                d.shape
            ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
                str(d.shape))

            shape_old = d.shape
            sq_axis = None
            if idx == 0:
                sq_axis = (0, 1)
            elif idx == 1:
                sq_axis = (0, 1, 2)
            else:
                continue

            data[idx] = np.squeeze(d, axis=sq_axis)
            shape_new = data[idx].shape
        return data

    def get_kernel_parameters(self, kind, params):
        assert kind in ["Convolution", "Pooling", "Deconvolution", "ConvolutionDepthwise"]
        [k_h, k_w] = [1, 1]
        if isinstance(params.kernel_size, numbers.Number):
            [k_h, k_w] = [params.kernel_size] * 2
        elif len(params.kernel_size) > 0:
            k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[
                0]
            k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
                len(params.kernel_size) - 1]
        elif params.kernel_h > 0 or params.kernel_w > 0:
            k_h = params.kernel_h
            k_w = params.kernel_w
        [s_h, s_w] = [1, 1]
        if isinstance(params.stride, numbers.Number):
            [s_h, s_w] = [params.stride] * 2
        elif len(params.stride) > 0:
            s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
            s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
                params.stride) - 1]
        elif params.stride_h > 0 or params.stride_w > 0:
            s_h = params.stride_h
            s_w = params.stride_w
        [p_h, p_w] = [0, 0]
        if isinstance(params.pad, numbers.Number):
            [p_h, p_w] = [params.pad] * 2
        elif len(params.pad) > 0:
            p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
            p_w = params.pad_w if params.pad_w > 0 else params.pad[len(
                params.pad) - 1]
        elif params.pad_h > 0 or params.pad_w > 0:
            p_h = params.pad_h
            p_w = params.pad_w
        dila_h = dila_w = 1
        group = 1
        c_o = 1
        if kind in ["Convolution", "Deconvolution", "ConvolutionDepthwise"]:
            if kind in ["Convolution", "Deconvolution"]:
                c_o = params.num_output
            dila_len = len(params.dilation)
            if dila_len == 2:
                dila_h = params.dilation[0]
                dila_w = params.dilation[1]
            elif dila_len == 1:
                dila_h = dila_w = params.dilation[0]
            else:
                assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                    dila_len)
        if kind in ['Convolution', 'Deconvolution']:
            group = params.group
        kernel = [k_h, k_w]
        stride = [s_h, s_w]
        pad = [p_h, p_w]
        dilation = [dila_h, dila_w]
        return c_o, kernel, stride, pad, dilation, group

    def get_input_name(self, node):
        if hasattr(node, "index"):
S
SunAhong1993 已提交
183
            return "{}_{}".format(node.layer_name, node.index)
S
SunAhong1993 已提交
184 185 186 187
        else:
            return node.layer_name

    def Input(self, node):
S
SunAhong1993 已提交
188
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
189 190 191 192 193 194 195 196 197
            "paddle.to_tensor",
            inputs={},
            outputs=[node.layer_name],
            data="x{}".format(self.input_index))
        shape = list(node.layer.input_param.shape[0].dim)[1:]
        self.inputs_info["x{}".format(self.input_index)] = [[-1] + shape, "float32"]
        self.input_index += 1

    def Convolution(self, node):
S
SunAhong1993 已提交
198
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
        out_channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
                np.zeros([out_channel, node.input_shape[0][1], kernel[0], kernel[1]]).astype(
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
            data = self.adjust_parameters(node)
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Convolution node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        layer_attrs = {
            "in_channels": node.input_shape[0][1],
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
233
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
234 235 236 237 238 239
            "paddle.nn.Conv2D",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)

    def Deconvolution(self, node):
S
SunAhong1993 已提交
240
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
        out_channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
                np.zeros([out_channel, node.input_shape[0][1], kernel[0], kernel[1]]).astype(
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
            data = self.adjust_parameters(node)
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        layer_attrs = {
            "in_channels": node.input_shape[0][1],
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
275
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
276 277 278 279 280 281
            "paddle.nn.Conv2DTranspose",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)
        
    def ConvolutionDepthwise(self, node):
S
SunAhong1993 已提交
282
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
        out_channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        out_channel = params.num_output if params.num_output is not None else node.input_shape[0][1]
        in_channel = node.input_shape[0][1]
        group = int(in_channel / (in_channel / out_channel)) if in_channel > out_channel else int(in_channel /
                                                                (out_channel / in_channel))
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
                np.zeros([out_channel, node.input_shape[0][1], kernel[0], kernel[1]]).astype(
                    'float32'))
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
            data = self.adjust_parameters(node)
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        layer_attrs = {
            "in_channels": in_channel,
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
321
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
322 323 324 325 326 327
            "paddle.nn.Conv2D",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)

    def Pooling(self, node):
S
SunAhong1993 已提交
328
        pool2d_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
        output_name = node.layer_name
        layer_outputs = [pool2d_name, output_name]
        params = node.layer.pooling_param
        ceil_mode = getattr(params, "ceil_mod", True)
        global_pool = getattr(params, "global_pooling", False)
        kernel_default = [1, 1]
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        if params.pool == 0:
            pool_type = "max"
        else:
            pool_type = "avg"
        assert len(
            node.inputs) == 1, "The count of Pooling node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
344 345 346 347
        if global_pool:
            if kernel[0] == 0:
                kernel = [1, 1]
            if params.pool == 0:
S
SunAhong1993 已提交
348
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
349 350 351 352 353
                    "paddle.nn.AdaptiveMaxPool2D",
                    inputs={"input": self.get_input_name(input)},
                    outputs=layer_outputs,
                    output_size=kernel)
            else:
S
SunAhong1993 已提交
354
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
355 356 357 358
                    "paddle.nn.AdaptiveAvgPool2D",
                    inputs={"input": self.get_input_name(input)},
                    outputs=layer_outputs,
                    output_size=kernel)
S
SunAhong1993 已提交
359
        else:
S
SunAhong1993 已提交
360 361 362 363 364 365 366 367 368
            layer_attrs = {
                'pool_size': kernel,
                'pool_stride': stride,
                'pool_padding': pad,
                'ceil_mode': ceil_mode,
                'pool_type': string(pool_type),
                'exclusive': False,
                'global_pooling': global_pool,
            }
S
SunAhong1993 已提交
369
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
370
                "paddle.fluid.dygraph.Pool2D",
S
SunAhong1993 已提交
371 372 373
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs,
                **layer_attrs)
S
SunAhong1993 已提交
374 375 376 377 378 379 380
#             layer_attrs = {
#                 'kernel_size': kernel,
#                 'stride': stride,
#                 'padding': pad,
#                 'ceil_mode': ceil_mode,
#             }
#             if params.pool == 0:
S
SunAhong1993 已提交
381
#                 self.paddle_graph.add_layer(
S
SunAhong1993 已提交
382 383 384 385 386 387
#                     "paddle.nn.MaxPool2D",
#                     inputs={"input": self.get_input_name(input)},
#                     outputs=layer_outputs,
#                     **layer_attrs)
#             else:
#                 layer_attrs["count_include_pad"] = True
S
SunAhong1993 已提交
388
#                 self.paddle_graph.add_layer(
S
SunAhong1993 已提交
389 390 391 392
#                     "paddle.nn.AvgPool2D",
#                     inputs={"input": self.get_input_name(input)},
#                     outputs=layer_outputs,
#                     **layer_attrs)
S
SunAhong1993 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405

    def LRN(self, node):
        assert len(node.inputs) == 1, "The count of LRN node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.lrn_param
        assert params.local_size % 2 == 1
        alpha = params.alpha / float(params.local_size)
        layer_attrs = {
            "n": params.local_size,
            "k": params.k,
            "alpha": alpha,
            "beta": params.beta,
        }
S
SunAhong1993 已提交
406
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
407 408 409 410 411 412
            "fluid.layers.lrn", 
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)

    def InnerProduct(self, node):
S
SunAhong1993 已提交
413
        linear_name = name_generator("linear", self.nn_name2id)
S
SunAhong1993 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        output_name = node.layer_name
        layer_outputs = [linear_name, output_name]
        data = node.data
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.inner_product_param
        if data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0."
                .format(node.layer_name, node.layer_type))
            data = []
            data.append(
                np.zeros([node.input_shape[0][1], params.num_output]).astype("float32").astype(
                    "float32"))
            data.append(
                np.zeros([params.num_output]).astype("float32").astype("float32"))
        else:
            data = self.adjust_parameters(node)
            # Reshape the parameters to Paddle's ordering
            transpose_order = (1, 0)
            w = data[0]
            fc_shape = w.shape
            output_channels = fc_shape[0]
            w = w.reshape((output_channels, -1))
            w = w.transpose(transpose_order)
            data[0] = w

        self.params[linear_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[linear_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of InnerProduct node\'s input is not 1."
        assert params.axis == 1
        assert params.bias_term == True
        layer_attrs = {
            "in_features": data[0].shape[0],
            "out_features": params.num_output           
        }
        if len(data) == 1:
            layer_attrs["bias"] = False
        if node.input_shape[0][-1] != data[0].shape[0]:
S
SunAhong1993 已提交
454
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
455 456 457 458
                "paddle.reshape",
                inputs={"x": self.get_input_name(input)},
                outputs=[output_name],
                shape=[-1, data[0].shape[0]])
S
SunAhong1993 已提交
459
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
460 461 462 463 464
                "paddle.nn.Linear",
                inputs={"input": output_name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
465
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
466 467 468 469 470 471 472 473 474 475
                "paddle.nn.Linear",
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs,
                **layer_attrs)
        
    def AbsVal(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of AbsVal node\'s input is not more than 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
476
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
477 478 479 480 481
            "paddle.abs",
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name])

    def Softmax(self, node):
S
SunAhong1993 已提交
482
        softmax_name = name_generator("softmax", self.nn_name2id)
S
SunAhong1993 已提交
483 484 485 486 487 488 489 490 491 492 493
        output_name = node.layer_name
        layer_outputs = [softmax_name, output_name]
        assert len(
            node.inputs) == 1, "The count of Softmax node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.softmax_param
        axis = params.axis
        shape = node.input_shape[0]
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
494
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
            "paddle.nn.Softmax",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)

    def Slice(self, node):
        assert len(
            node.inputs) == 1, "The count of Slice node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        top_len = len(node.layer.top)
        params = node.layer.slice_param
        axis = params.axis
        slice_dim = params.slice_dim
        if slice_dim != 1 and axis == 1:
            axis = slice_dim
        output_shape = node.output_shape
S
SunAhong1993 已提交
511 512 513
        sections_list = list()
        outputs_list = list()
        for i, s in enumerate(output_shape):
S
SunAhong1993 已提交
514
            sections_list.append(s[axis])
S
SunAhong1993 已提交
515
            outputs_list.append("{}_{}".format(node.layer_name, i))
S
SunAhong1993 已提交
516 517
        layer_attrs = {
            'num_or_sections': sections_list,
S
SunAhong1993 已提交
518
            'axis': axis,
S
SunAhong1993 已提交
519
        }
S
SunAhong1993 已提交
520
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
521
            "paddle.split",
S
SunAhong1993 已提交
522
            inputs={"x": self.get_input_name(input)},
S
SunAhong1993 已提交
523
            outputs=outputs_list,
S
SunAhong1993 已提交
524 525 526 527 528 529
            **layer_attrs)

    def Concat(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of Concat node\'s input is not more than 1."
S
SunAhong1993 已提交
530
        inputs_list = dict()
S
SunAhong1993 已提交
531 532
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
533
            inputs_list[i] = self.get_input_name(input)
S
SunAhong1993 已提交
534 535 536
        params = node.layer.concat_param
        axis = params.axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
537
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
538
            "paddle.concat",
S
SunAhong1993 已提交
539
            inputs={"x": inputs_list},
S
SunAhong1993 已提交
540 541 542 543
            outputs=[node.layer_name],
            **layer_attrs)

    def ReLU(self, node):
S
SunAhong1993 已提交
544
        relu_name = name_generator("relu", self.nn_name2id)
S
SunAhong1993 已提交
545 546 547 548 549 550 551 552 553 554
        output_name = node.layer_name
        layer_outputs = [relu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.relu_param
        if params.HasField('negative_slope') and params.negative_slope != 0:
            negative_slope = float(params.negative_slope)

            layer_attrs = {'alpha': negative_slope}
S
SunAhong1993 已提交
555
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
556 557 558 559 560
                "paddle.nn.LeakyReLU",
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
561
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
562 563 564 565 566
                "paddle.nn.ReLU",
                inputs={"input": self.get_input_name(input)},
                outputs=layer_outputs)

    def PReLU(self, node):
S
SunAhong1993 已提交
567
        prelu_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
568 569 570 571 572 573 574 575 576
        output_name = node.layer_name
        layer_outputs = [prelu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of PReLU node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
        output_shape = node.output_shape[0]
        if mode_bool:
S
SunAhong1993 已提交
577 578
            mode = 'all'
            channel = None
S
SunAhong1993 已提交
579
        else:
S
SunAhong1993 已提交
580 581
            mode = 'channel'
            channel = output_shape[1]
S
SunAhong1993 已提交
582 583 584 585
        data = node.data
        self.params[prelu_name + '._weight'] = np.squeeze(data[0])
        assert data is not None, "The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.".format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
586
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
587 588 589
            "paddle.nn.PReLU",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
S
SunAhong1993 已提交
590 591
            channel=channel,
            mode=string(mode))
S
SunAhong1993 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

    def Eltwise(self, node):
        assert len(
            node.inputs) == 2, "The count of Eltwise node\'s input is not 2."
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        input0_name = self.get_input_name(input0)
        input1_name = self.get_input_name(input1)
        if mode == 0:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
607
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
608 609 610 611 612 613
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name])
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
S
SunAhong1993 已提交
614
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
615
                    "paddle.scale",
S
SunAhong1993 已提交
616 617
                    inputs={"x": input0_name},
                    outputs=[node.layer_name + '_mul0'],
S
SunAhong1993 已提交
618
                    scale=coeff[0])
S
SunAhong1993 已提交
619
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
620
                    "paddle.scale",
S
SunAhong1993 已提交
621 622
                    inputs={"x": input1_name},
                    outputs=[node.layer_name + '_mul1'],
S
SunAhong1993 已提交
623
                    scale=coeff[2])
S
SunAhong1993 已提交
624 625 626
                inputs_dict = {}
                inputs_dict['x'] = node.layer_name + '_mul0'
                inputs_dict['y'] = node.layer_name + '_mul1'
S
SunAhong1993 已提交
627
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
628 629 630 631 632 633 634
                    "paddle.add",
                    inputs=inputs_dict,
                    outputs=[node.layer_name])
            else:
                inputs_dict = {}
                inputs_dict['x'] = input0_name
                inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
635
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
636 637 638 639 640 641 642
                    "paddle.add",
                    inputs=inputs_dict,
                    outputs=[node.layer_name])
        else:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
643
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
644 645 646 647 648
                "paddle.max",
                inputs=inputs_dict,
                outputs=[node.layer_name])

    def BatchNorm(self, node):
S
SunAhong1993 已提交
649
        batchnorm_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
        output_name = node.layer_name
        layer_outputs = [batchnorm_name, output_name]
        assert len(
            node.inputs) == 1, "The count of BatchNorm node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.batch_norm_param
        if hasattr(params, "eps"):
            eps = params.eps
        else:
            eps = 1e-5
        if node.data is None or len(node.data) != 3:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            mean = np.zeros([node.input_shape[0][1], ]).astype("float32")
            variance = np.zeros([node.input_shape[0][1], ]).astype("float32")
            scale = 0
        else:

            node.data = [np.squeeze(i).astype("float32") for i in node.data]
            mean, variance, scale = node.data
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.params[batchnorm_name + "._mean"] = mean
        self.params[batchnorm_name + '._variance'] = variance
        layer_attrs = {
            "num_features": node.input_shape[0][1],
            "epsilon": eps,
            "weight_attr": False,
            "bias_attr": False,
        }
S
SunAhong1993 已提交
683
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
684 685 686 687 688 689 690 691 692 693
            "paddle.nn.BatchNorm2D",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs,
            **layer_attrs)
   
    def Scale(self, node):
        if node.data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
694
            self.params[node.layer_name + "_cparam1"] = np.zeros([
S
SunAhong1993 已提交
695 696
                node.input_shape[0][1],
            ]).astype("float32")
S
SunAhong1993 已提交
697
            self.params[node.layer_name + "_cparam2"] = np.zeros([
S
SunAhong1993 已提交
698 699 700
                node.input_shape[0][1],
            ]).astype("float32")
        else:
S
SunAhong1993 已提交
701
            self.params[node.layer_name + "_cparam1"] = np.squeeze(node.data[
S
SunAhong1993 已提交
702
                0]).astype("float32")
S
SunAhong1993 已提交
703
            self.params[node.layer_name + "_cparam2"] = np.squeeze(node.data[
S
SunAhong1993 已提交
704 705 706 707 708 709 710 711 712 713 714 715
                1]).astype("float32")
        params = node.layer.scale_param
        axis = params.axis
        inputs = []
        if len(node.inputs) == 2:
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
            input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
            input0_name = self.get_input_name(input0)
            input1_name = self.get_input_name(input1)
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
716
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
717 718 719 720 721
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"],
                axis=1)
        else:
S
SunAhong1993 已提交
722 723
            self.paddle_graph.add_layer(
                "self.create_parameter",
S
SunAhong1993 已提交
724 725
                inputs={},
                outputs=[node.layer_name + "_cparam1"],
S
SunAhong1993 已提交
726 727
                shape=self.params[node.layer_name + "_cparam1"].shape,
                attr=string(node.layer_name + "_cparam1"))
S
SunAhong1993 已提交
728 729 730 731 732
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
            input0_name = self.get_input_name(input0)
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = node.layer_name + "_cparam1"
S
SunAhong1993 已提交
733
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
734 735 736 737
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"],
                axis=axis)
S
SunAhong1993 已提交
738 739 740 741 742 743
        self.paddle_graph.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[node.layer_name + "_cparam2"],
            shape=self.params[node.layer_name + "_cparam2"].shape,
            attr=string(node.layer_name + "_cparam2"))
S
SunAhong1993 已提交
744 745 746
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = node.layer_name + "_cparam2"
S
SunAhong1993 已提交
747 748 749 750 751 752 753 754 755 756 757 758
        output_shape = node.output_shape[0]
        if axis == -1:
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs=inputs_dict,
                outputs=[node.layer_name])
        else:
            if axis < 0:
                axis = axis + len(output_shape)
            param2_shape = self.params[node.layer_name + "_cparam2"].shape
            param2_shape_len = len(param2_shape)
            diff_len = len(output_shape) - axis - param2_shape_len
S
SunAhong1993 已提交
759
            new_shape = list(param2_shape) + [1] * diff_len
S
SunAhong1993 已提交
760 761 762 763 764 765 766 767 768 769
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.layer_name + "_cparam2"},
                outputs=[node.layer_name + "_cparam2"],
                shape=new_shape)
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs=inputs_dict,
                outputs=[node.layer_name])
            
S
SunAhong1993 已提交
770 771 772
    def Reshape(self, node):
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        output_shape = node.output_shape[0]
S
SunAhong1993 已提交
773
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
774 775 776
            "paddle.reshape",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
S
SunAhong1993 已提交
777
            shape=output_shape)
S
SunAhong1993 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793


    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of ArgMax node\'s input and output is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        input_shape = node.input_shape[0]
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
        axis = parmas.axis if hasattr(params, axis) else -1
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
S
SunAhong1993 已提交
794
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
795 796 797 798
                "paddle.topk",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name + "_topk_var", node.layer_name + "_index_var"],
                k=top_k)
S
SunAhong1993 已提交
799
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
800 801 802 803
                "paddle.cast",
                inputs={"x": node.layer_name + "_index_var"},
                outputs=[node.layer_name + "_index_var"],
                dtype="{}_topk_var.dtype".format(node.layer_name))
S
SunAhong1993 已提交
804
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
805
                "paddle.concat",
S
SunAhong1993 已提交
806
                inputs={"x": [node.layer_name + "_topk_var", node.layer_name + "_index_var"]},
S
SunAhong1993 已提交
807 808 809
                outputs=[node.layer_name],
                axis=axis)
        else:
S
SunAhong1993 已提交
810
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
                "paddle.topk",
                inputs={"x": self.get_input_name(input)},
                outputs=["_", node.layer_name],
                k=top_k)
            
    def Axpy(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of Axpy node\'s input and output is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.axpy_param
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        input2 = self.graph.get_bottom_node(node, idx=2, copy=True)
        input0_name = self.get_input_name(input0)
        input1_name = self.get_input_name(input1)
        input2_name = self.get_input_name(input2)
        inputs_dict = {}
        inputs_dict['x'] = input1_name
        inputs_dict['y'] = input0_name
S
SunAhong1993 已提交
831
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
832 833 834 835 836 837 838
            "paddle.multiply",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"],
            axis=0)
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = input2_name
S
SunAhong1993 已提交
839
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
            "paddle.add",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"])
        

    def Crop(self, node):
        assert len(
            node.inputs) == 2, "The count of Crop node\'s input is not 2."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        example = self.graph.get_bottom_node(node, idx=1, copy=True)
        params = node.layer.crop_param
        axis = params.axis
        input_shape = node.input_shape[0]
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
        if hasattr(params, "offset") and len(params.offset) > 0:
            offset = list(params.offset)
            assert (len(input_shape) - axis
                    ) == len(offset), "invalid offset[%s] in crop layer" % (
                        str(offset))
            offset_real = [0] * axis + offset
S
SunAhong1993 已提交
862
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
863 864 865 866 867 868 869 870 871 872 873
                "paddle.crop",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name],
                shape=node.input_shape[1],
                offsets=list(offset_real))

    def Flatten(self, node):
        assert len(
            node.
            inputs) == 1, "The count of DetectionOutput node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
874
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
            "paddle.reshape",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            shape=node.output_shape[0])

    def Power(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.power_param
        layer_attrs = {
            'scale': params.scale,
            'bias': params.shift,
            'bias_after_scale': True
        }
S
SunAhong1993 已提交
890
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
891 892 893 894
            "paddle.scale",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
895
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
            "paddle.pow",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            exponent=params.power)

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, "The count of Reduction node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
        input_len = len(node.input_shape[0])
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        # operation = SUM
        if operation == 1:  
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
921
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
922 923 924 925 926 927
                "paddle.sum",
                inputs={"input": self.get_input_name(input)},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = ASUM
        elif operation == 2:  
S
SunAhong1993 已提交
928
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
929 930 931 932 933 934 935
                "paddle.abs",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name])
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
936
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
937 938 939 940 941 942
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = SUMSQ
        elif operation == 3: 
S
SunAhong1993 已提交
943
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
944 945 946 947 948 949 950 951
                "paddle.pow",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name],
                exponent=2.0)
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
952
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
953 954 955 956 957 958 959 960 961 962
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = MEAN
        else: 
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
963
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
964 965 966 967
                "paddle.mean",
                inputs={"input": self.get_input_name(input)},
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
968
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
969 970 971 972 973 974
            "paddle.scale",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            scale=coeff)
        
    def DetectionOutput(self, node):
S
SunAhong1993 已提交
975 976 977
        detection_output_name = name_generator("detection_output", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [detection_output_name, output_name]
S
SunAhong1993 已提交
978 979
        assert len(
            node.inputs) == 3, "The count of DetectionOutput node\'s input is not 3."
S
SunAhong1993 已提交
980
        inputs_dict = dict()
S
SunAhong1993 已提交
981 982 983 984 985 986 987 988 989 990
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
            if i == 1:
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
                while input is not None \
                      and input.layer_type != 'Softmax' \
                      and input.layer_type != 'Sigmoid':
                    input = self.graph.get_bottom_node(input, idx=0, copy=True)
                assert input is not None, 'This kind of DetectionOutput is not supported!'
                input = self.graph.get_bottom_node(input, idx=0, copy=True)
S
SunAhong1993 已提交
991
            inputs_dict["x{}".format(i)] = self.get_input_name(input)
S
SunAhong1993 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
        params = node.layer.detection_output_param
        nms_param = params.nms_param
        nms_param_dict = dict()
        nms_param_dict["nms_threshold"] = nms_param.nms_threshold
        nms_param_dict["top_k"] = nms_param.top_k
        nms_param_dict["eta"] = nms_param.eta
        if nms_param is None:
            nms_param_dict = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        fields = ["eta", "top_k", "nms_threshold"]
        for f in default.keys():
            if f not in nms_param_dict:
                nms_param_dict[f] = default[f]
        layer_attrs = {
            "background_label": params.background_label_id,
            "nms_threshold": nms_param_dict["nms_threshold"],
            "nms_top_k": nms_param_dict["top_k"],
            "keep_top_k": params.keep_top_k,
            "score_threshold": params.confidence_threshold,
            "nms_eta": nms_param_dict["eta"]}
S
SunAhong1993 已提交
1012 1013
        self.paddle_graph.add_layer(
            kernel="custom_layer:DetectionOutput",
S
SunAhong1993 已提交
1014
            inputs=inputs_dict,
S
SunAhong1993 已提交
1015
            outputs=layer_outputs,
S
SunAhong1993 已提交
1016 1017 1018
            **layer_attrs)
                    
    def Normalize(self, node):
S
SunAhong1993 已提交
1019 1020 1021
        normalize_name = name_generator("normalize", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [normalize_name, output_name]
S
SunAhong1993 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        assert len(
            node.inputs) == 1, "The count of Normalize node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.norm_param
        if node.data is None or len(node.data) != 1:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            self.parmas[node.layer_name + ".scale"] = \
                np.zeros([1] if params.channel_shared else [1, 1, 1, node.input_shape[0][1]]).astype("float32")
        else:
            self.parmas[node.layer_name + ".scale"] = self.adjust_parameters(node)[0]
S
SunAhong1993 已提交
1034 1035 1036 1037 1038 1039 1040
        
        layer_attrs = {
            "axis": -1 if params.channel_shared else 1,
            "param_name": node.layer_name + ".scale",
            "param_shape": self.parmas[node.layer_name + ".scale"].shape}
        self.pd_pdgraph.add_layer(
            "custom_layer:Normalize",
S
SunAhong1993 已提交
1041
            inputs={"x": self.get_input_name(input)},
S
SunAhong1993 已提交
1042 1043
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
1044 1045 1046 1047 1048 1049 1050
        
    def Permute(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.permute_param
        order = list(params.order)    
S
SunAhong1993 已提交
1051
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1052 1053 1054 1055 1056 1057
            "paddle.transpose",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            perm=order)
        
    def PriorBox(self, node):
S
SunAhong1993 已提交
1058 1059 1060
        priorbox_name = name_generator("priorbox", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [priorbox_name, output_name]
S
SunAhong1993 已提交
1061 1062 1063 1064 1065
        assert len(
            node.inputs) == 2, "The count of PriorBox node\'s input is not 2."
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        inputs_dict = {}
S
SunAhong1993 已提交
1066 1067
        inputs_dict["x0"] = self.get_input_name(input0)
        inputs_dict["x1"] = self.get_input_name(input1)
S
SunAhong1993 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        params = node.layer.prior_box_param
        steps = tuple(params.step) if type(params.step) \
                is list or type(params.step) is tuple \
                else (params.step, params.step)
        layer_attrs = {
            "min_sizes": params.min_size,
            "max_sizes": params.max_size,
            "aspect_ratios": params.aspect_ratio,
            "variance": params.variance,
            "flip": params.flip,
            "clip": params.clip,
            "steps": steps,
            "offset": params.offset,
            "min_max_aspect_ratios_order": True}
S
SunAhong1993 已提交
1082 1083
        self.paddle_graph.add_layer(
            "custom_layer:PriorBox",
S
SunAhong1993 已提交
1084
            inputs=inputs_dict,
S
SunAhong1993 已提交
1085
            outputs=layer_outputs,
S
SunAhong1993 已提交
1086
            **layer_attrs)
S
SunAhong1993 已提交
1087
        
S
SunAhong1993 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    def ReLU6(self, node):
        if "relu6" in self.nn_name2id:
            self.nn_name2id["relu6"] += 1
        else:
            self.nn_name2id["relu6"] = 0
        relu6_name = "relu6" + str(self.nn_name2id["relu6"])
        output_name = node.layer_name
        layer_outputs = [relu6_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU6 node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1099
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1100 1101 1102 1103 1104
            "paddle.nn.ReLU6",
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs)
        
    def ROIPooling(self, node):
S
SunAhong1993 已提交
1105 1106 1107
        roipooling_name = name_generator("roipooling", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [roipooling_name, output_name]
S
SunAhong1993 已提交
1108 1109 1110 1111 1112
        assert len(
            node.inputs) == 2, "The count of ROIPooling node\'s input is not 2."
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        inputs_dict = {}
S
SunAhong1993 已提交
1113 1114
        inputs_dict["x0"] = self.get_input_name(input0)
        inputs_dict["x1"] = self.get_input_name(input1)
S
SunAhong1993 已提交
1115 1116 1117 1118 1119
        params = node.layer.roi_pooling_param
        layer_attrs = {
            "pooled_height": params.pooled_h,
            "pooled_width": params.pooled_w,
            "spatial_scale": params.spatial_scale}
S
SunAhong1993 已提交
1120 1121
        self.paddle_graph.add_layer(
            "custom_layer:ROIPooling",
S
SunAhong1993 已提交
1122
            inputs=inputs_dict,
S
SunAhong1993 已提交
1123
            outputs=layer_outputs,
S
SunAhong1993 已提交
1124 1125 1126 1127 1128 1129 1130
            **layer_attrs)
        
    def ShuffleChannel(self, node):
        assert len(
            node.inputs) == 1, "The count of ShuffleChannel node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.shuffle_channel_param
S
SunAhong1993 已提交
1131
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            "fluid.layers.shuffle_channel",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            group=params.group)
        
    def Upsample(self, node):
        assert len(
            node.inputs) == 1, "The count of Upsample node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.upsample_param
        layer_attrs = {
            "align_corners": False,
            "scale_factor": params.scale,
            "mode": "nearest"}
S
SunAhong1993 已提交
1146
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1147 1148 1149 1150 1151 1152
            "paddle.nn.functioanl.interpolate",
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
    
    def Select(self, node):
S
SunAhong1993 已提交
1153 1154 1155
        select_name = name_generator("select", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [select_name, output_name]
S
SunAhong1993 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164
        assert len(
            node.inputs) == 1, "The count of Select node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        input_shape = node.input_shape[0]
        params = node.layer.select_param
        layer_attrs = {
            "input_shape": input_shape,
            "point": params.slice_point,
            "axis": params.axis}
S
SunAhong1993 已提交
1165 1166 1167 1168
        self.paddle_graph.add_layer(
            "custom_layer:Select",
            inputs={"x": self.get_input_name(input)},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
            **layer_attrs)
        

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        prefix_name = node.layer_type.lower()
        if prefix_name in self.nn_name2id:
            self.nn_name2id[prefix_name] += 1
        else:
            self.nn_name2id[prefix_name] = 0
        first_output_name = prefix_name + str(self.nn_name2id[prefix_name])
        output_name = node.layer_name
        layer_outputs = [relu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of Activate node\'s input is not 1."
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1187
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1188 1189 1190 1191
            op_info,
            inputs={"input": self.get_input_name(input)},
            outputs=layer_outputs)