onnx_op_mapper.py 43.6 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
27
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
28 29
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
30
import math
C
update  
channingss 已提交
31 32 33 34 35 36

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
    if 'Constant' in node.layer_name:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39 40 41 42
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
43 44 45 46 47 48 49 50
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


C
update  
channingss 已提交
51 52 53 54 55 56 57 58
class ONNXOpMapper(OpMapper):
    def __init__(self, decoder):
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
59
        self.used_custom_layers = dict()
C
update  
channingss 已提交
60 61 62 63 64

        if not self.op_checker():
            raise Exception("Model are not supported yet.")

        #mapping op
C
updatea  
channingss 已提交
65 66 67 68 69
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
70 71 72 73 74 75 76
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
77
                self.directly_map(node)
C
channingss 已提交
78 79
            elif op in custom_layers:
                self.deal_custom_layer(node)
C
update  
channingss 已提交
80 81 82 83 84 85

    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
C
channingss 已提交
86 87 88
            if not hasattr(
                    self, op
            ) and op not in default_op_mapping and op not in custom_layers:
C
update  
channingss 已提交
89 90 91 92 93 94 95 96 97 98
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
99
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
131
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
132
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
133 134 135 136
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
137 138 139
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
140 141
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
142 143
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
C
channingss 已提交
144
                                  inputs=val_inps[0],
C
update  
channingss 已提交
145 146 147
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
148 149 150
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
151
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
152 153 154 155
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        node.fluid_code.add_layer(func.__code__.co_name,
C
channingss 已提交
156
                                  inputs=node.inputs,
C
channingss 已提交
157 158 159 160 161
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
162
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
163 164 165
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
C
channingss 已提交
166

C
update  
channingss 已提交
167
    def place_holder(self, node):
C
channingss 已提交
168
        self.input_shapes.append(node.out_shapes[0])
C
update  
channingss 已提交
169 170
        attr = {
            "dtype": string(node.dtype),
C
channingss 已提交
171
            "shape": node.out_shapes[0],
C
update  
channingss 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
185
        shape = node.out_shapes[0]
C
update  
channingss 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
213
    def _interpolate(self, node):
C
channingss 已提交
214 215
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        out_shape_ = val_y.out_shapes[0]
        if out_shape_ is not None:
            assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape_ = out_shape_[2:]
        scales = _const_weight_or_none(val_scales)
        if scales is not None:
            assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
            assert scales[0] == 1 and scales[
                1] == 1, 'only scale on (NC)HW supported'
            assert scales[2] == scales[
                3], 'only aspect-ratio-invariant scale supported'
        scale = scales[2] if scales else None
        if scale is None:
            assert out_shape_, 'neither scales nor output shape is available'
            out_shape = out_shape_
        else:
            out_shape = None
            if out_shape_ is None:
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
                out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]

        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)

        attr = {
            'scale': scale,
            'out_shape': out_shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
255
    def Pad(self, node, op_independent=True):
C
channingss 已提交
256
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
257 258 259
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
260 261
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
283 284 285 286
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

C
channingss 已提交
302 303 304 305 306 307 308 309 310 311
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        k = 10
        attr = {'k': k, 'name': string(node.layer_name)}
        node.fluid_code.add_layer('topk',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
312
    def Unsqueeze(self, node):
C
channingss 已提交
313
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
314 315 316 317 318 319 320
        axes = node.get_attr('axes')
        attr = {'axes': axes, 'name': string(node.layer_name)}
        node.fluid_code.add_layer('unsqueeze',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
321
    def Shrink(self, node):
C
channingss 已提交
322
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
323 324 325 326 327 328 329 330 331
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
332 333 334 335 336 337 338 339 340 341 342
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)
        if shape is None:
C
channingss 已提交
343
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
344 345 346 347 348 349 350 351 352
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

        if len(value) == 1:  # scalar
C
channingss 已提交
353
            value = value.tolist()
C
update  
channingss 已提交
354 355 356 357 358 359 360 361 362
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
377 378

    def Resize(self, node):
C
channingss 已提交
379 380
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
381
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
382

C
channingss 已提交
383
        out_shape_ = val_y.out_shapes[0]
C
update  
channingss 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        if out_shape_ is not None:
            assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape_ = out_shape_[2:]
        scales = _const_weight_or_none(val_scales)
        if scales is not None:
            assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
            assert scales[0] == 1 and scales[
                1] == 1, 'only scale on (NC)HW supported'
            assert scales[2] == scales[
                3], 'only aspect-ratio-invariant scale supported'
        scale = scales[2] if scales else None
        if scale is None:
            assert out_shape_, 'neither scales nor output shape is available'
            out_shape = out_shape_
        else:
            out_shape = None
            if out_shape_ is None:
C
channingss 已提交
401
                in_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
                out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]

        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
        attr = {
            'scale': scale,
            'out_shape': out_shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
419 420 421
    def Upsample(self, node):
        self._interpolate(node)

C
channingss 已提交
422 423 424 425 426 427
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis')
        assert len(
C
channingss 已提交
428 429
            indices_shape) <= 1, "Gather op don't support dim of indice >1 "
        if axis == 0 and len(indices_shape) <= 1:
C
channingss 已提交
430
            node.fluid_code.add_layer('gather',
C
channingss 已提交
431 432 433 434
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
C
channingss 已提交
435 436
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
437 438 439
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            print(val_x.out_shapes[0])
C
channingss 已提交
440
            perm = [axis] + perm[:axis] + perm[axis + 1:]
C
channingss 已提交
441
            #             perm = [0]
C
channingss 已提交
442 443 444 445 446 447 448
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
C
channingss 已提交
449 450 451 452
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
C
channingss 已提交
453 454 455 456 457 458 459
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)

C
channingss 已提交
460
    def Slice(self, node):
C
channingss 已提交
461
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
        val_starts, val_ends, val_axes, val_steps = None, None, None, None
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            axes = self.graph.get_input_node(node, idx=3, copy=True)
            steps = self.graph.get_input_node(node, idx=4, copy=True)

            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
            self.omit_nodes.append(axes.layer_name)
            self.omit_nodes.append(steps.layer_name)

            starts = _const_weight_or_none(starts).copy()
            ends = _const_weight_or_none(ends).copy()
            axes = _const_weight_or_none(axes)
            steps = _const_weight_or_none(steps)
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
482

C
channingss 已提交
483 484 485 486 487 488
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
489 490
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
491
            for idx, value in enumerate(ends):
C
channingss 已提交
492 493
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
494 495 496 497 498 499
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
500
    def ConstantOfShape(self, node):
C
channingss 已提交
501
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
502
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
503 504 505
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
506
            shape = node.out_shapes[0]
C
update  
channingss 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
C
channingss 已提交
527 528
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
529 530

        fluid_op = 'split'
C
channingss 已提交
531
        split = node.get_attr('split')
C
update  
channingss 已提交
532
        axis = node.get_attr('axis', 0)
C
channingss 已提交
533 534 535 536 537
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
C
update  
channingss 已提交
538 539
        # generation
        node.fluid_code.add_layer('split',
C
channingss 已提交
540 541
                                  inputs=val_x,
                                  output=val_y,
C
update  
channingss 已提交
542 543 544
                                  param_attr=attr)

    def Reshape(self, node):
C
channingss 已提交
545 546
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
547 548
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
549

C
update  
channingss 已提交
550 551 552 553 554
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)

        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
555 556
            shape, _, _ = self.decoder.onnx_graph.get_dynamic_shape(
                val_shape.layer_name)
C
channingss 已提交
557

C
update  
channingss 已提交
558
        if shape is None:
C
channingss 已提交
559
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
560 561 562 563 564 565

        shape_dtype = val_shape.dtype

        if shape_dtype is None:
            _logger.warning(
                'in op %s(%s -> Reshape -> %s): '
C
channingss 已提交
566 567
                'dtype of input "shape" not inferred, int32 assumed',
                node.layer_name, val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
568 569
            shape_dtype = _np.dtype('int32')
        if shape is None:
C
channingss 已提交
570
            shape = [1, -1]
C
update  
channingss 已提交
571 572 573
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
574 575
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
576 577 578 579 580 581 582 583
        attr = {'shape': shape, 'name': string(node.layer_name)}

        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
C
channingss 已提交
584
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
C
channingss 已提交
601
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
602 603

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
604 605 606 607 608 609 610 611
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
612

C
channingss 已提交
613 614
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
615
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
616
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
617 618 619 620 621 622
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
641
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
642 643 644 645 646 647 648
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
C
channingss 已提交
649
                                  inputs=inputs,
C
update  
channingss 已提交
650 651 652 653
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
C
channingss 已提交
654
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
655 656 657 658 659 660 661 662
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
C
channingss 已提交
663 664 665
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
683

C
update  
channingss 已提交
684 685 686 687 688 689 690 691 692
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
706 707

    def Add(self, node):
C
channingss 已提交
708 709
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
710 711 712 713 714 715 716 717 718 719
        inputs = {
            "x": val_x,
            "y": val_y,
        }
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
    def Sub(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {
            "x": val_x,
            "y": val_y,
        }
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("elementwise_sub",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def Pow(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {
            "x": val_x,
            "y": val_y,
        }
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("elementwise_pow",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
746
    def Sum(self, node):
747
        val_inps = node.layer.input
748
        inputs = {
C
channingss 已提交
749 750
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
751 752
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
753

C
channingss 已提交
754 755
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
756 757
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
758
                "y": y,
759 760 761 762
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
763 764

    def MatMul(self, node):
C
channingss 已提交
765 766
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
767 768 769 770 771 772 773 774
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
C
channingss 已提交
775 776 777 778 779
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
780 781 782 783 784 785 786 787 788

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
789 790
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
791 792 793 794
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
795
            "is_test": True,
C
update  
channingss 已提交
796 797 798 799
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
800
            "use_global_stats": spatial,
C
update  
channingss 已提交
801 802 803 804 805 806 807 808
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
C
channingss 已提交
809
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
810 811 812 813 814 815 816
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
817
    def Mul(self, node):
C
channingss 已提交
818 819
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
        val_y_shape = val_y.out_shapes[0]
        slice_idx = 0
        for dim in val_y_shape:
            if dim == 1:
                slice_idx += 1
            else:
                break
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer("elementwise_mul",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer("elementwise_mul",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)

C
update  
channingss 已提交
851
    def Div(self, node):
C
channingss 已提交
852 853
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
854 855 856 857 858 859 860
        val_y_shape = val_y.out_shapes[0]
        slice_idx = 0
        for dim in val_y_shape:
            if dim == 1:
                slice_idx += 1
            else:
                break
C
update  
channingss 已提交
861
        attr = {"name": string(node.layer_name)}
C
channingss 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer("elementwise_div",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer("elementwise_div",
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
884 885

    def Relu(self, node):
C
channingss 已提交
886
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
887 888 889 890 891 892 893
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
C
channingss 已提交
894 895
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
896

C
channingss 已提交
897 898 899 900 901 902 903 904 905 906
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
907 908 909 910 911 912
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
C
channingss 已提交
913 914 915
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
C
update  
channingss 已提交
916 917 918 919 920 921
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Identity(self, node):
C
channingss 已提交
922
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
923 924 925
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)

    def MaxPool(self, node):
C
channingss 已提交
926
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
927

C
channingss 已提交
928
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
929 930 931 932 933 934 935 936 937 938 939
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
940

C
channingss 已提交
941 942
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
943
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
944
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
945 946 947 948 949 950
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def GlobalAveragePool(self, node):
C
channingss 已提交
966
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
967
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
968 969
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
        attr = {
            "pool_type": string("avg"),
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Conv(self, node):
C
channingss 已提交
988 989
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
990 991 992 993 994 995
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
996
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
997 998 999
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1000
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1001 1002
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1003
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1004 1005 1006 1007 1008 1009 1010
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1011
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1012 1013
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1014
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1039 1040

    def ConvTranspose(self, node):
C
channingss 已提交
1041 1042 1043
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1044 1045 1046 1047 1048 1049 1050 1051

        self.omit_nodes.append(val_w.layer_name)
        self.omit_nodes.append(val_b.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1052
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1053 1054 1055
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1056
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1057 1058
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1059 1060 1061 1062 1063
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1064 1065 1066 1067

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1068

C
channingss 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
            'bias_attr': string(val_b.layer_name),
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)