opset.py 81.6 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


C
Channingss 已提交
45
def _rename_or_remove_weight(weights, origin_name, target_name=None, is_remove=True):
46 47 48 49 50
    ''' 
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
51 52 53 54
        origin_name(String): Name of parameter to rename or remove.
        target_name(String, optional): if target_name is not None, add new key-value pair 
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's 
            naming rule of parameters. Default: None.
55 56 57 58
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
    Returns:
        None
    '''   
C
Channingss 已提交
59 60
    if origin_name not in weights:
        raise KeyError('{} not a key in {}'.format(origin_name, weights))
C
Channingss 已提交
61
    if is_remove:
C
Channingss 已提交
62
        # remove weight
C
Channingss 已提交
63 64 65 66 67 68
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
    if target_name is not None:
        # rename weight
        weights[target_name] = data
C
Channingss 已提交
69

S
SunAhong1993 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
100
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110 111
            raise
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
112
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
113 114 115 116
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
    }

S
SunAhong1993 已提交
117 118 119 120 121
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
        'ReduceMean': ['paddle.mean',
                       dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
122
                       dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
123 124
        'ReduceSum': ['paddle.sum', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
125
                      dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
126 127
        'ReduceMin': ['paddle.min', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
128
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
129 130
        'ReduceMax': ['paddle.max', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
131
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
132 133
        'ReduceProd': ['paddle.prod', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
134
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
135 136 137 138
        # active function
        'Relu': ['paddle.nn.ReLU'],
        'LeakyRelu': ['paddle.nn.LeakyReLU', 
                      dict(alpha='negative_slope'), 
S
SunAhong1993 已提交
139
                      dict(negative_slope=.01)],
S
SunAhong1993 已提交
140
        'Elu': ['paddle.nn.functional.elu', 
S
fix  
SunAhong1993 已提交
141
                dict(alpha='alpha'), 
S
SunAhong1993 已提交
142 143 144 145 146 147 148 149
                dict(alpha=1.)],
        'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', 
                            dict(alpha='threshold'),
                            dict(alpha=1.)],
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
        'Softplus': ['paddle.nn.Softplus', 
S
fix  
SunAhong1993 已提交
150
                     dict(threshold='threshold'), 
S
SunAhong1993 已提交
151 152
                     dict(threshold=float(sys.maxsize))],
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
153
        'Log': ['paddle.log'],
C
Channingss 已提交
154 155 156
        'LogSoftmax': ['paddle.nn.functional.log_softmax', 
                    dict(axis='axis'), 
                    dict(axis=1)],
S
SunAhong1993 已提交
157
        'Softmax': ['paddle.nn.Softmax', 
S
fix  
SunAhong1993 已提交
158
                    dict(axis='axis'), 
S
SunAhong1993 已提交
159 160 161 162 163
                    dict(axis=1)],
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
S
SunAhong1993 已提交
164 165 166 167 168 169 170 171 172 173
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.input_index = 0
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
174
        self.done_weight_list = list()
S
SunAhong1993 已提交
175 176 177 178 179 180

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
196
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
197 198
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
199
            output_name = node.name
S
SunAhong1993 已提交
200
            layer_outputs = [op_name, output_name]
201

S
SunAhong1993 已提交
202 203
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
204
                inputs={"x": input.name},
S
SunAhong1993 已提交
205 206 207 208 209
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
210 211
                inputs={"x": input.name},
                outputs=[node.name],
S
SunAhong1993 已提交
212
                **layer_attrs)        
S
SunAhong1993 已提交
213
       
S
SunAhong1993 已提交
214 215 216 217 218 219
            
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
220 221
        inputs_dict = {'x': val_x.name, 
                       'y': val_y.name}
S
SunAhong1993 已提交
222 223 224
        self.paddle_graph.add_layer(
            op_type, 
            inputs=inputs_dict, 
S
SunAhong1993 已提交
225
            outputs=[node.name])
S
SunAhong1993 已提交
226 227 228 229 230 231 232 233 234 235 236 237

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
238
            outputs=[node.name],
S
SunAhong1993 已提交
239 240 241 242 243 244 245 246 247 248
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
249
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
250 251 252
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
253
                outputs=[node.name],
S
SunAhong1993 已提交
254 255 256 257
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
258
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
259 260 261
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
262
                outputs=[node.name],
S
SunAhong1993 已提交
263
                shape=shape,
S
SunAhong1993 已提交
264
                attr=string(node.name),
S
SunAhong1993 已提交
265
                dtype=string(dtype),
S
fix  
SunAhong1993 已提交
266
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")       
S
SunAhong1993 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
283
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
284
        attrs = dict()
S
SunAhong1993 已提交
285 286 287 288
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
289 290 291
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:]
S
SunAhong1993 已提交
292 293 294
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
S
fix  
SunAhong1993 已提交
295 296 297
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:]
S
SunAhong1993 已提交
298 299 300
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
S
SunAhong1993 已提交
301
                var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
S
SunAhong1993 已提交
302 303
                self.paddle_graph.add_layer(
                    'paddle.split',
S
SunAhong1993 已提交
304
                    inputs={"x": val_sizes.name},
S
SunAhong1993 已提交
305 306 307 308 309 310 311 312
                    outputs=[var_nc, var_hw],
                    num_or_sections=[2, 2],
                    axis=0)
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": var_hw},
                    outputs=[var_hw],
                    dtype=string('int32'))
S
SunAhong1993 已提交
313 314 315
                inputs['size'] = var_hw
                attrs = {"align_corners": False,
                         "mode": string(node.get_attr('mode', 'nearest'))}
S
SunAhong1993 已提交
316
                self.paddle_graph.add_layer(
S
docs  
SunAhong1993 已提交
317
                    kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
318
                    inputs=inputs,
S
SunAhong1993 已提交
319
                    outputs=[node.name],
S
SunAhong1993 已提交
320 321
                    **attrs)
                return
S
SunAhong1993 已提交
322 323
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
324 325 326 327 328 329 330 331 332
            self.paddle_graph.add_layer(
                "paddle.slice",
                inputs={"input": val_scales.name},
                outputs=[val_scales.name],
                axes=[0],
                starts=[2],
                ends=[4])
            inputs['scale_factor'] = val_scales.name
 
S
SunAhong1993 已提交
333
        mode = node.get_attr('mode', 'nearest')
S
fix  
SunAhong1993 已提交
334 335 336
        attrs.update({"align_corners": False,
                      "mode": string(mode),
                      "align_mode": 1})
S
SunAhong1993 已提交
337 338 339
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
S
fix  
SunAhong1993 已提交
340
            attrs["align_corners"] = True
S
SunAhong1993 已提交
341 342 343
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
344
            outputs=[node.name],
S
SunAhong1993 已提交
345 346 347 348 349 350 351 352 353
            **attrs)
        
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
354 355
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
356 357 358 359
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
360 361
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
362
            min=0.0,
S
SunAhong1993 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
            max=1.0)  
        
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('int64'))   
S
SunAhong1993 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
394
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
395 396 397
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
            **layer_attrs)
                       

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
414
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
415 416 417
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
418 419 420 421 422 423
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
424 425 426 427 428 429 430 431
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
432 433 434 435
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
436
        assume_pad = False
S
SunAhong1993 已提交
437 438
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
439 440 441
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
442
        else:
S
fix  
SunAhong1993 已提交
443 444 445
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
446 447
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
448 449
            if len(pads) == 10 and sum(pads) == 0:
                pads = pads[0: 6]
S
fix  
SunAhong1993 已提交
450
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
451
                if data_shape:
S
fix  
SunAhong1993 已提交
452
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW
S
SunAhong1993 已提交
453
                if output_shape:
S
fix  
SunAhong1993 已提交
454 455 456 457 458
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads)  # NCHW
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
459
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
                            (2, -1)).transpose().astype("int32").flatten().tolist()
                        layer_attrs['pad'] = paddings
                    else:
                        raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
473
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
474 475 476 477 478
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                if assume_pad:
S
for pad  
SunAhong1993 已提交
479
                    paddle_op = 'paddle.nn.Pad2D'
S
fix  
SunAhong1993 已提交
480
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
481 482 483 484 485 486 487 488
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['padding'] = paddings
                    else:
                        layer_attrs["pad"] = paddings
                        paddle_op = "custom_layer:PadAllDim4WithOneInput"
S
SunAhong1993 已提交
489
            else:
S
fix  
SunAhong1993 已提交
490
                 raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
491 492
            self.paddle_graph.add_layer(
                paddle_op, 
S
SunAhong1993 已提交
493
                inputs={'x': val_x.name}, 
S
fix  
SunAhong1993 已提交
494
                outputs=layer_outputs[1:] if paddle_op == 'paddle.nn.functional.pad' else layer_outputs, 
S
SunAhong1993 已提交
495
                **layer_attrs)
S
fix  
SunAhong1993 已提交
496
            if not op_independent:
S
SunAhong1993 已提交
497
                return node.name + '_paded'
S
SunAhong1993 已提交
498
        else:
S
fix  
SunAhong1993 已提交
499 500
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
501
                if data_shape:
S
fix  
SunAhong1993 已提交
502
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW
S
SunAhong1993 已提交
503
                if output_shape:
S
fix  
SunAhong1993 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len  # NCHW 
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
                        "custom_layer:PadWithTwoInput", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
                                "custom_layer:PadAllDim2", 
                                inputs={'x': val_x.name, 'pad': val_pad.name}, 
                                outputs=layer_outputs, 
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                if assume_pad:
                    self.paddle_graph.add_layer(
                        "custom_layer:PadAllDim4", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs, 
                        value=value,
                        mode=string(mode))
            else:
                raise Exception("The padding value is wrong!")   
S
SunAhong1993 已提交
548 549
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
550 551 552 553 554 555 556

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        layer_attrs = {'axis': axes}
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
557
            if node.name:
S
SunAhong1993 已提交
558 559
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
560 561
                    inputs={"x": val_x.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
562 563
                    shape=[1])
        else:
S
fix  
SunAhong1993 已提交
564 565
            self.paddle_graph.add_layer(
                'paddle.unsqueeze', 
S
SunAhong1993 已提交
566 567
                inputs={"x": val_x.name}, 
                outputs=[node.name],
S
fix  
SunAhong1993 已提交
568
                **layer_attrs)
S
SunAhong1993 已提交
569 570 571 572 573 574 575 576 577

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
            'paddle.nn.functional.hardshrink', 
S
SunAhong1993 已提交
578 579
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
S
SunAhong1993 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
601
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
602 603 604 605 606 607
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
608
                outputs=[node.name],
S
SunAhong1993 已提交
609 610 611 612 613
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
614
            self.weights[node.name] = value
S
SunAhong1993 已提交
615 616 617
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
618
                outputs=[node.name],
S
SunAhong1993 已提交
619
                shape=shape,
S
SunAhong1993 已提交
620
                attr=string(node.name),
S
SunAhong1993 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
635
        output_name = node.name
S
SunAhong1993 已提交
636 637 638 639 640
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
641 642
        self.weights[op_name+'.scale'] = self.weights[val_scale.name]
        self.weights[op_name+'.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
643 644 645 646 647
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
648
        if dim == 3:
S
SunAhong1993 已提交
649 650 651 652 653 654 655 656 657
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
            raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.")
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
658
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
659 660 661 662 663 664 665 666
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
667
        name_ones = node.name + '_ones'
S
SunAhong1993 已提交
668
        attr_ones = {
S
SunAhong1993 已提交
669
            'shape': val_shape.name,
S
SunAhong1993 已提交
670 671 672 673 674 675 676 677 678
            'dtype': string(val_x_dtype),
            'fill_value': 1
        }
        self.paddle_graph.add_layer(
            'paddle.full',
            inputs={},
            outputs=[name_ones],
            **attr_ones)
        inputs_dict = {'x': name_ones, 
S
SunAhong1993 已提交
679
                       'y': val_x.name}
S
SunAhong1993 已提交
680 681 682
        self.paddle_graph.add_layer(
            'paddle.multiply',
            inputs=inputs_dict,
S
SunAhong1993 已提交
683
            outputs=[node.name])
S
SunAhong1993 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696

    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
697 698 699
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
700 701
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
702
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
703 704
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
705 706
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
707 708 709 710
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
711
                        outputs=[node.name],
S
SunAhong1993 已提交
712 713 714 715
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
716 717 718
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
719 720 721
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
722
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
723 724
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
725
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
726 727 728 729 730
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
731 732
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
733 734 735
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
736 737
            self.paddle_graph.add_layer(
                'paddle.transpose', 
S
SunAhong1993 已提交
738 739
                inputs={"x": node.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
740
                perm=new_perm)
S
SunAhong1993 已提交
741 742 743
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
744 745
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
746 747 748 749
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
750
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
751 752
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
753
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
754
                    outputs=[indices_cast],
S
SunAhong1993 已提交
755 756
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
757
                output_name = node.name
S
SunAhong1993 已提交
758
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
759
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
760 761 762 763
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
764 765
                    num_embeddings=val_x.out_shapes[0][0],
                    embedding_dim=val_x.out_shapes[0][1])
S
SunAhong1993 已提交
766 767 768
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
769
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
770 771
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
772
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
773 774 775 776 777 778
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
779
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
780
                            'index': indices_reshape},
S
SunAhong1993 已提交
781
                    outputs=[node.name])
S
SunAhong1993 已提交
782 783 784 785 786 787 788 789
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
790 791
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
792 793 794 795
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
796
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
797 798
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
799
                inputs={"x": indices.name},
S
SunAhong1993 已提交
800 801 802 803 804
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
805
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
806 807
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
808
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
809 810 811 812 813 814
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
815 816
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
817 818 819
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
820 821
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
822
                inputs={"x": node.name},
S
SunAhong1993 已提交
823
                outputs=[input_transpose],
S
SunAhong1993 已提交
824 825
                perm=new_perm)
            perm = new_perm
S
SunAhong1993 已提交
826 827 828 829 830 831 832 833 834
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
835
                outputs=[node.name],
S
SunAhong1993 已提交
836 837 838 839 840 841 842 843 844 845
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
S
SunAhong1993 已提交
846 847 848 849
                inputs={'x': val_x.name,
                        'index': indices.name,
                        'updates': updates.name},
                outputs=[node.name])
S
SunAhong1993 已提交
850
        else:
S
SunAhong1993 已提交
851
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
852 853 854
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
855 856
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
857 858
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
859
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
860 861
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
862
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
863 864 865 866 867
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
868 869
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
870 871
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
872 873
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
874 875 876
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
877
                inputs={"x": updates.name},
S
SunAhong1993 已提交
878 879 880 881 882 883 884
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
885
                    'index': indices.name,
S
SunAhong1993 已提交
886 887 888
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
889
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
890 891 892
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
893
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
894 895 896
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
897
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
898 899 900 901 902 903
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
904
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
905 906
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
907
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
908 909 910 911 912 913 914
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
915
                outputs=[node.name])
S
SunAhong1993 已提交
916 917 918 919 920 921 922

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
S
SunAhong1993 已提交
923 924 925
        inputs = {'start': val_start.name, 
                  'end': val_limit.name, 
                  'step': val_delta.name}
S
SunAhong1993 已提交
926 927 928
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
929
            outputs=[node.name],
S
SunAhong1993 已提交
930 931 932 933 934 935 936 937 938 939 940
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
941 942
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
943
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
944 945 946 947 948
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
949
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
950 951
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
952 953
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
954 955
                steps = _const_weight_or_none(steps).tolist()
            
S
SunAhong1993 已提交
956 957
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
958 959
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
960
            }
S
SunAhong1993 已提交
961
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
962 963 964
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
S
SunAhong1993 已提交
965
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
966 967 968 969
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
S
SunAhong1993 已提交
970
                  
S
SunAhong1993 已提交
971 972 973 974 975 976 977
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
978
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
979 980
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
981
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
982 983 984 985
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
986
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
987 988
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
989 990
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
991
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
992 993 994 995 996 997 998 999 1000 1001 1002 1003
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

S
fix  
SunAhong1993 已提交
1004

S
SunAhong1993 已提交
1005 1006 1007 1008
        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
                'paddle.strided_slice', 
S
SunAhong1993 已提交
1009 1010
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1011 1012 1013 1014
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                'paddle.slice', 
S
SunAhong1993 已提交
1015 1016
                inputs={"input": val_x.name}, 
                outputs=[node.name],  
S
SunAhong1993 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
            layer_attrs = {
                'dtype': string(dtype),
                'fill_value': value
            }
            self.paddle_graph.add_layer(
                "paddle.full", 
S
SunAhong1993 已提交
1037
                inputs={'shape': val_shape.name}, 
S
SunAhong1993 已提交
1038
                outputs=[node.name],
S
SunAhong1993 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                **layer_attrs)

    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
S
fix  
SunAhong1993 已提交
1053
            
S
SunAhong1993 已提交
1054 1055
            self.paddle_graph.add_layer(
                'paddle.clip', 
S
SunAhong1993 已提交
1056 1057
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1058 1059
                **layer_attrs)
        else:
S
fix  
SunAhong1993 已提交
1060 1061
            min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
S
SunAhong1993 已提交
1062
            min_value = _const_weight_or_none(min_ipt)
S
fix  
SunAhong1993 已提交
1063
            max_value = _const_weight_or_none(max_ipt)
S
SunAhong1993 已提交
1064 1065 1066 1067 1068 1069 1070 1071
            if max_value.shape == (1, ):
                max_value = max_value[0]
            if min_value.shape == (1, ):
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
            layer_attrs = {'max': max_value, 'min': min_value}
            self.paddle_graph.add_layer(
                'paddle.clip', 
S
SunAhong1993 已提交
1072 1073
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
                **layer_attrs)
        else:
            raise

    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
        layer_attrs = {
            'num_or_sections': split,
            'axis': axis,
        }
        outputs_list = list()
        if isinstance(split, list) or isinstance(split, tuple):
S
SunAhong1993 已提交
1090 1091 1092 1093 1094
            if len(split) == 1:
                outputs_list.append(node.name)
            else:
                for i in range(len(split)):
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
1095
        else:
S
SunAhong1993 已提交
1096
            outputs_list.append(node.name)
S
SunAhong1993 已提交
1097 1098
        self.paddle_graph.add_layer(
            'paddle.split', 
S
SunAhong1993 已提交
1099
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            outputs=outputs_list, 
            **layer_attrs)

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1114 1115
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1116 1117 1118 1119 1120
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1121 1122
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1123 1124 1125 1126 1127 1128
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1129 1130
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1131
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1132 1133 1134 1135 1136 1137
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1138 1139
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1140 1141
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1142
                outputs=[node.name])
S
SunAhong1993 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
            'paddle.cast', 
S
SunAhong1993 已提交
1158 1159
            inputs={'x': val_input.name}, 
            outputs=[node.name], 
S
SunAhong1993 已提交
1160 1161 1162 1163 1164 1165
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer('paddle.logical_not', 
S
SunAhong1993 已提交
1166 1167
                                    inputs={'x': val_input.name}, 
                                    outputs=[node.name])
S
SunAhong1993 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1191 1192 1193 1194 1195
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1196
        layer_attrs = {
S
SunAhong1993 已提交
1197 1198 1199
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1200 1201 1202 1203 1204
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
            paddle_op, 
R
root 已提交
1205
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1206
            outputs=layer_outputs, 
S
SunAhong1993 已提交
1207 1208 1209 1210 1211 1212 1213 1214
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1215
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1216 1217 1218 1219 1220 1221 1222
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
            'paddle.concat', 
            inputs={"x": inputs_list}, 
S
SunAhong1993 已提交
1223
            outputs=[node.name], 
S
SunAhong1993 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        output_shape = node.out_shapes[0]
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
            'paddle.reshape', 
S
SunAhong1993 已提交
1242 1243
            inputs={"x": val_x.name}, 
            outputs=[node.name],
S
SunAhong1993 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1256 1257 1258
        val_mm = node.name + '_mm'
        matmul_inputs = {"x": val_a.name, 
                         "y": val_b.name}
S
SunAhong1993 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
            "paddle.scale", 
            inputs={"x": val_mm}, 
            outputs=[val_mm],
            scale=alpha)

        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, 
S
SunAhong1993 已提交
1277
                              "y": val_c.name}
S
SunAhong1993 已提交
1278 1279 1280
                self.paddle_graph.add_layer(
                    "paddle.add",
                    inputs=add_inputs,
S
SunAhong1993 已提交
1281
                    outputs=[node.name])
S
SunAhong1993 已提交
1282
            else:
S
SunAhong1993 已提交
1283
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1284 1285
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1286
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1287 1288 1289 1290
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1291
                    "paddle.add",
S
SunAhong1993 已提交
1292
                    inputs=add_inputs,
S
SunAhong1993 已提交
1293
                    outputs=[node.name])
S
SunAhong1993 已提交
1294 1295 1296 1297 1298

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1299 1300 1301 1302
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1303 1304 1305
        }
        self.paddle_graph.add_layer("paddle.add", 
                                    inputs=inputs_dict, 
S
SunAhong1993 已提交
1306
                                    outputs=[node.name])
S
SunAhong1993 已提交
1307 1308 1309 1310

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1311 1312
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1313 1314 1315 1316
            }
            self.paddle_graph.add_layer(
                "paddle.add", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1317
                outputs=[node.name])
S
SunAhong1993 已提交
1318 1319 1320 1321 1322 1323 1324

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
S
SunAhong1993 已提交
1325 1326
        inputs_dict = {"x": val_x.name, 
                       "y": val_y.name}
S
SunAhong1993 已提交
1327
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1328
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1329 1330
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1331
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1332 1333 1334 1335 1336 1337
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1338
                outputs=[node.name])
S
SunAhong1993 已提交
1339 1340 1341 1342
        else:
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1343
                outputs=[node.name])
S
SunAhong1993 已提交
1344 1345 1346 1347

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1348
        output_name = node.name
S
SunAhong1993 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

C
Channingss 已提交
1360 1361 1362 1363 1364
        _rename_or_remove_weight(self.weights, val_scale.name, op_name+'.weight')
        _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias')
        _rename_or_remove_weight(self.weights, val_var.name, op_name+'._variance')
        _rename_or_remove_weight(self.weights, val_mean.name, op_name+'._mean')

S
SunAhong1993 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
            "paddle.nn.BatchNorm", 
S
SunAhong1993 已提交
1376
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
1377 1378 1379 1380 1381 1382
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1383 1384 1385 1386
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1387 1388
        self.paddle_graph.add_layer(
            "paddle.transpose", 
S
SunAhong1993 已提交
1389 1390
            inputs={"x": val_x.name},
            outputs=[node.name], 
S
SunAhong1993 已提交
1391 1392 1393 1394 1395
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1396
        output_name = node.name
S
SunAhong1993 已提交
1397 1398 1399 1400 1401 1402
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1403
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1404 1405
            mode = 'all'

S
SunAhong1993 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
                inputs={}, 
                outputs=[output_name + "__zeros"], 
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name, 
                        "y": output_name + "__zeros"}, 
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name, 
                        "y": output_name + "__zeros"}, 
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={"x": val_slope.name, 
                        "y": output_name + "__min"}, 
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": output_name + "__max", 
                        "y": output_name + "__mul"}, 
                outputs=[output_name])
S
SunAhong1993 已提交
1433
        else:
S
fix  
SunAhong1993 已提交
1434
            if mode == 'channel':
S
SunAhong1993 已提交
1435
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
                if slope_data is None:
                    self.paddle_graph.add_layer(
                        "paddle.reshape", 
                        inputs={"x": val_slope.name}, 
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
                        "paddle.nn.functional.prelu", 
                        inputs={"x": val_x.name,
                                "weight": val_slope.name}, 
                        outputs=[node.name])
                    return
C
Channingss 已提交
1448
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1449
                if len(shape_slope) > 1:
1450
                    self.weights[op_name+'._weight'] = np.reshape(slope_data, shape_slope[0])
S
SunAhong1993 已提交
1451 1452 1453
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
C
Channingss 已提交
1454
                _rename_or_remove_weight(self.weights, val_slope.name)
1455
                self.weights[op_name+'._weight'] = np.reshape(self.weights[val_slope.name], [1])
S
SunAhong1993 已提交
1456 1457 1458 1459
            self.paddle_graph.add_layer(
                "paddle.nn.PReLU", 
                inputs={"x": val_x.name}, 
                outputs=layer_outputs, 
1460
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1461 1462 1463 1464 1465 1466 1467 1468

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1469 1470
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1471 1472 1473 1474
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
                "paddle.squeeze", 
S
SunAhong1993 已提交
1475 1476
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1477 1478 1479 1480 1481 1482 1483 1484
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1485 1486 1487
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1488 1489 1490 1491 1492 1493 1494

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1495 1496
            inputs={'x': val_x.name,
                    'y': val_y.name},
S
SunAhong1993 已提交
1497
            outputs=[node.name],
S
SunAhong1993 已提交
1498 1499 1500 1501 1502 1503 1504 1505
            param_attr=None)

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1506
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1507 1508
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1509
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1510 1511 1512 1513 1514 1515 1516
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1517
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1518 1519
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1520
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1521 1522
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1523
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1524 1525
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1526
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1527 1528
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1529
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1530 1531
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1532
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1533 1534 1535 1536 1537 1538 1539
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1540
            outputs=[node.name])
S
SunAhong1993 已提交
1541 1542 1543 1544 1545 1546 1547 1548

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
S
SunAhong1993 已提交
1549 1550
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
S
SunAhong1993 已提交
1551 1552
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1553
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1554
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1555 1556 1557 1558
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
S
SunAhong1993 已提交
1559 1560
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
S
SunAhong1993 已提交
1561 1562
            self.paddle_graph.add_layer(
                "paddle.split",
S
SunAhong1993 已提交
1563 1564
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
S
SunAhong1993 已提交
1565 1566 1567 1568
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
                "paddle.concat", 
S
SunAhong1993 已提交
1569 1570
                inputs={"x": val_x.name}, 
                outputs=[node.name])
S
SunAhong1993 已提交
1571 1572 1573 1574 1575 1576

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.assign", 
S
SunAhong1993 已提交
1577 1578
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
SunAhong1993 已提交
1579 1580 1581 1582 1583 1584 1585 1586

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1587
            repeats = val_repeats.name
S
SunAhong1993 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
                    outputs=["{}.tmp".format(repeats)],
                    dtype=string("int32"))
                repeats = "{}.tmp".format(repeats)

        elif isinstance(repeats, int):
            repeats = [repeats]

        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1601
            "name": string(node.name),
S
SunAhong1993 已提交
1602 1603 1604
        }
        self.paddle_graph.add_layer(
            "paddle.tile", 
S
SunAhong1993 已提交
1605 1606
            inputs={"x": val_x.name}, 
                    outputs=[node.name], 
S
SunAhong1993 已提交
1607 1608 1609 1610 1611
                    repeat_times=repeats)

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1612
        output_name = node.name
S
SunAhong1993 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
            
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1646
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1647 1648 1649 1650 1651 1652
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1653
        output_name = node.name
S
SunAhong1993 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1668
            inputs={'x': val_x.name}, 
S
SunAhong1993 已提交
1669 1670 1671 1672 1673 1674
            outputs=layer_outputs, 
            output_size=output_shape[2:])

    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1675
        output_name = node.name
S
SunAhong1993 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1690
            inputs={'x': val_x.name}, 
S
SunAhong1993 已提交
1691 1692 1693 1694 1695 1696
            outputs=layer_outputs, 
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
        op_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
1697
        output_name = node.name
S
SunAhong1993 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
1728
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
S
SunAhong1993 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
C
Channingss 已提交
1738 1739 1740 1741
        remove_weight = True if  val_w.name in self.done_weight_list else False
        if remove_weight:
            self.done_weight_list.append(val_w.name)
        _rename_or_remove_weight(self.weights, val_w.name, op_name+'.weight', remove_weight)
S
SunAhong1993 已提交
1742
        if has_bias:
C
Channingss 已提交
1743 1744 1745 1746
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
                self.done_weight_list.append(val_b_name)
            _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias', remove_bias)
S
SunAhong1993 已提交
1747 1748
        else:
            layer_attrs["bias_attr"] = False
S
fix  
SunAhong1993 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757
        if reduce(lambda x,y:x*y, input_shape) in [1, -1] and 1 not in input_shape:
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
                "paddle.reshape", 
                inputs=layer_inputs, 
                outputs=[layer_inputs["x"]], 
                shape=input_shape)
S
SunAhong1993 已提交
1758 1759
        self.paddle_graph.add_layer(
            paddle_op, 
S
fix  
SunAhong1993 已提交
1760
            inputs=layer_inputs, 
S
SunAhong1993 已提交
1761 1762 1763 1764 1765
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
1766 1767 1768
        op_name = name_generator("conv_trans", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
1782
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]

        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
1800

S
fix  
SunAhong1993 已提交
1801
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
1802
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
S
SunAhong1993 已提交
1803
        layer_attrs = {
1804
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
1805
            "out_channels": num_out_channels * num_groups,
1806
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
1807 1808 1809
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
1810 1811 1812
            "groups": num_groups,
            "output_padding":out_padding}
            
C
Channingss 已提交
1813
        _rename_or_remove_weight(self.weights, val_w.name, op_name+'.weight',)
S
fix  
SunAhong1993 已提交
1814
        if val_b is not None:
C
Channingss 已提交
1815
            _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias')
S
SunAhong1993 已提交
1816
        self.paddle_graph.add_layer(
1817
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
1818
            inputs=inputs_dict,
1819
            outputs=layer_outputs,
S
SunAhong1993 已提交
1820
            **layer_attrs)
S
fix  
SunAhong1993 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
        
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'axis': axis,
                      'keepdim': keepdims}
        self.paddle_graph.add_layer(
            'paddle.argmax', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
C
Channingss 已提交
1833 1834
            **layer_attrs)

S
SunAhong1993 已提交
1835
        
C
Channingss 已提交
1836
    @print_mapping_info
S
SunAhong1993 已提交
1837 1838 1839 1840
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.shape", 
S
fix  
SunAhong1993 已提交
1841
            inputs={"input": val_x.name}, 
S
SunAhong1993 已提交
1842
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
1843 1844 1845 1846 1847
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))  
S
SunAhong1993 已提交
1848 1849 1850 1851 1852 1853 1854 1855
        self.paddle_graph.add_layer(
            "paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
        
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1856 1857 1858 1859 1860 1861
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
1862 1863 1864 1865
        self.paddle_graph.add_layer(
            "paddle.sign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
1866 1867 1868 1869 1870 1871
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": node.name}, 
                outputs=[node.name],
                dtype=string(node.dtype))
S
SunAhong1993 已提交
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
        
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
            "custom_layer:OneHot", 
            inputs={"indices": indices.name,
                    "depth": depth.name,
                    "values": values.name}, 
            outputs=layer_outputs,
            axis=axis)
    
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.reciprocal", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
C
Channingss 已提交
1897

1898 1899
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
1900 1901 1902 1903 1904 1905
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
1906
        have_bias = False
C
Channingss 已提交
1907 1908
        if input_nums > 3 and node.layer.input[3] != '':
            bias = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
1909
            have_bias = True
C
Channingss 已提交
1910 1911 1912 1913 1914 1915
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
            sequence_lens = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
            init_h = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
1916 1917 1918 1919 1920 1921
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
                shape=init_h.out_shapes[0]
                )
C
Channingss 已提交
1922 1923 1924
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
            init_c = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
1925 1926 1927 1928 1929 1930
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
                shape=init_c.out_shapes[0]
                )
C
Channingss 已提交
1931 1932

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
1933
        _rename_or_remove_weight(self.weights, input_weight.name)
1934
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1]/4)
C
Channingss 已提交
1935 1936
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
1937
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
1938
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
1939
        _rename_or_remove_weight(self.weights, bias.name)
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
        input_bias_np = bias_np[:, :4*hidden_size]
        hidden_bias_np = bias_np[:, 4*hidden_size:]

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
            slices = [w[:,x * n: y * n] for x, y in intervals]
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
1950

1951 1952 1953 1954
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
1955

C
Channingss 已提交
1956
        weights = transform_weight_with_bias(
C
Channingss 已提交
1957 1958 1959 1960 1961 1962 1963
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
        yh_out = node.output(1) 
        yc_out = node.output(2)
1964
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            print(param_names)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

1980 1981 1982
        if direction == 'backward':
            raise Exception("LSTM support 'forward' or 'bidirectional', except '{}'.".format(direction))
        else:
C
Channingss 已提交
1983 1984 1985
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
1986

C
Channingss 已提交
1987 1988 1989 1990 1991 1992 1993
        self.paddle_graph.add_layer(
            'paddle.nn.LSTM', 
            inputs={'input': x.name, 'initial_states': (init_h.name, init_c.name)},
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
1994
            direction=string(direction),
C
Channingss 已提交
1995 1996 1997 1998 1999 2000
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2001
            shape=[0, 0, -1, hidden_size]
C
Channingss 已提交
2002 2003 2004 2005 2006 2007 2008
            )
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
            perm=[0,2,1,3]
            )
S
SunAhong1993 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
        
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
        layer_attrs["largest"] = True if node.get_attr('largest', 1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted', 1) == 1 else False
        self.paddle_graph.add_layer(
            "paddle.topk", 
            inputs={"x": val_x.name,
                    "k": val_k.name}, 
            outputs=["{}_p{}".format(node.layer_name, 0), "{}_p{}".format(node.layer_name, 1)],
            **layer_attrs)
S
add lrn  
SunAhong1993 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
        
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
        layer_attrs = {
            'size': size,
            'alpha': alpha,
            'beta': beta,
            'k': bias
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
2042
            "custom_layer:LocalResponseNorm", 
S
add lrn  
SunAhong1993 已提交
2043 2044 2045
            inputs={"x": val_x.name}, 
            outputs=layer_outputs, 
            **layer_attrs)
S
SunAhong1993 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
        
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w]
                )
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 3, 4, 1, 5, 2]
                )
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize]
                )
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[b, c // (blocksize ** 2), blocksize, blocksize, h, w]
                )
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 1, 4, 2, 5, 3]
                )
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[b, c // (blocksize ** 2), h * blocksize, w * blocksize]
                )