opset.py 78.9 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


C
Channingss 已提交
45
def _rename_or_remove_weight(weights, origin_name, target_name=None, is_remove=True):
46 47 48 49 50
    ''' 
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
51 52 53 54
        origin_name(String): Name of parameter to rename or remove.
        target_name(String, optional): if target_name is not None, add new key-value pair 
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's 
            naming rule of parameters. Default: None.
55 56 57 58
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
    Returns:
        None
    '''   
C
Channingss 已提交
59 60
    if origin_name not in weights:
        raise KeyError('{} not a key in {}'.format(origin_name, weights))
C
Channingss 已提交
61
    if is_remove:
C
Channingss 已提交
62
        # remove weight
C
Channingss 已提交
63 64 65 66 67 68
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
    if target_name is not None:
        # rename weight
        weights[target_name] = data
C
Channingss 已提交
69

S
SunAhong1993 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
100
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
101 102 103 104 105 106 107 108 109 110 111
            raise
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
112
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
113 114 115 116
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
    }

S
SunAhong1993 已提交
117 118 119 120 121
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
        'ReduceMean': ['paddle.mean',
                       dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
122
                       dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
123 124
        'ReduceSum': ['paddle.sum', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
125
                      dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
126 127
        'ReduceMin': ['paddle.min', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
128
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
129 130
        'ReduceMax': ['paddle.max', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
131
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
132 133
        'ReduceProd': ['paddle.prod', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
134
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
135 136 137 138
        # active function
        'Relu': ['paddle.nn.ReLU'],
        'LeakyRelu': ['paddle.nn.LeakyReLU', 
                      dict(alpha='negative_slope'), 
S
SunAhong1993 已提交
139
                      dict(negative_slope=.01)],
S
SunAhong1993 已提交
140
        'Elu': ['paddle.nn.functional.elu', 
S
fix  
SunAhong1993 已提交
141
                dict(alpha='alpha'), 
S
SunAhong1993 已提交
142 143 144 145 146 147 148 149
                dict(alpha=1.)],
        'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', 
                            dict(alpha='threshold'),
                            dict(alpha=1.)],
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
        'Softplus': ['paddle.nn.Softplus', 
S
fix  
SunAhong1993 已提交
150
                     dict(threshold='threshold'), 
S
SunAhong1993 已提交
151 152
                     dict(threshold=float(sys.maxsize))],
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
153
        'Log': ['paddle.log'],
C
Channingss 已提交
154 155 156
        'LogSoftmax': ['paddle.nn.functional.log_softmax', 
                    dict(axis='axis'), 
                    dict(axis=1)],
S
SunAhong1993 已提交
157
        'Softmax': ['paddle.nn.Softmax', 
S
fix  
SunAhong1993 已提交
158
                    dict(axis='axis'), 
S
SunAhong1993 已提交
159 160 161 162 163
                    dict(axis=1)],
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
S
SunAhong1993 已提交
164 165 166 167 168 169 170 171 172 173
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.input_index = 0
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
174
        self.done_weight_list = list()
S
SunAhong1993 已提交
175 176 177 178 179 180

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
196
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
197 198
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
199
            output_name = node.name
S
SunAhong1993 已提交
200
            layer_outputs = [op_name, output_name]
201

S
SunAhong1993 已提交
202 203
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
204
                inputs={"x": input.name},
S
SunAhong1993 已提交
205 206 207 208 209
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
210 211
                inputs={"x": input.name},
                outputs=[node.name],
S
SunAhong1993 已提交
212
                **layer_attrs)        
S
SunAhong1993 已提交
213
       
S
SunAhong1993 已提交
214 215 216 217 218 219
            
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
220 221
        inputs_dict = {'x': val_x.name, 
                       'y': val_y.name}
S
SunAhong1993 已提交
222 223 224
        self.paddle_graph.add_layer(
            op_type, 
            inputs=inputs_dict, 
S
SunAhong1993 已提交
225
            outputs=[node.name])
S
SunAhong1993 已提交
226 227 228 229 230 231 232 233 234 235 236 237

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
238
            outputs=[node.name],
S
SunAhong1993 已提交
239 240 241 242 243 244 245 246 247 248
            data="x{}".format(self.input_index))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
249
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
250 251 252
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
253
                outputs=[node.name],
S
SunAhong1993 已提交
254 255 256 257
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
258
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
259 260 261
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
262
                outputs=[node.name],
S
SunAhong1993 已提交
263
                shape=shape,
S
SunAhong1993 已提交
264
                attr=string(node.name),
S
SunAhong1993 已提交
265
                dtype=string(dtype),
S
fix  
SunAhong1993 已提交
266
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")       
S
SunAhong1993 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
283
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
284
        attrs = dict()
S
SunAhong1993 已提交
285 286 287 288
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
289 290 291
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:]
S
SunAhong1993 已提交
292 293 294
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
S
fix  
SunAhong1993 已提交
295 296 297
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[2:]
S
SunAhong1993 已提交
298 299 300
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
S
SunAhong1993 已提交
301
                var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
S
SunAhong1993 已提交
302 303
                self.paddle_graph.add_layer(
                    'paddle.split',
S
SunAhong1993 已提交
304
                    inputs={"x": val_sizes.name},
S
SunAhong1993 已提交
305 306 307 308 309 310 311 312
                    outputs=[var_nc, var_hw],
                    num_or_sections=[2, 2],
                    axis=0)
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": var_hw},
                    outputs=[var_hw],
                    dtype=string('int32'))
S
SunAhong1993 已提交
313 314 315
                inputs['size'] = var_hw
                attrs = {"align_corners": False,
                         "mode": string(node.get_attr('mode', 'nearest'))}
S
SunAhong1993 已提交
316
                self.paddle_graph.add_layer(
S
docs  
SunAhong1993 已提交
317
                    kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
318
                    inputs=inputs,
S
SunAhong1993 已提交
319
                    outputs=[node.name],
S
SunAhong1993 已提交
320 321
                    **attrs)
                return
S
SunAhong1993 已提交
322 323
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
324 325 326 327 328 329 330 331 332
            self.paddle_graph.add_layer(
                "paddle.slice",
                inputs={"input": val_scales.name},
                outputs=[val_scales.name],
                axes=[0],
                starts=[2],
                ends=[4])
            inputs['scale_factor'] = val_scales.name
 
S
SunAhong1993 已提交
333
        mode = node.get_attr('mode', 'nearest')
S
fix  
SunAhong1993 已提交
334 335 336
        attrs.update({"align_corners": False,
                      "mode": string(mode),
                      "align_mode": 1})
S
SunAhong1993 已提交
337 338 339
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
S
fix  
SunAhong1993 已提交
340
            attrs["align_corners"] = True
S
SunAhong1993 已提交
341 342 343
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
344
            outputs=[node.name],
S
SunAhong1993 已提交
345 346 347 348 349 350 351 352 353
            **attrs)
        
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
354 355
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
356 357 358 359
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
360 361
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
362
            min=0.0,
S
SunAhong1993 已提交
363 364 365 366 367 368 369 370 371 372 373 374 375 376
            max=1.0)  
        
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('int64'))   
S
SunAhong1993 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
394
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
395 396 397
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
            **layer_attrs)
                       

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
414
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
415 416 417
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
418 419 420 421 422 423
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
424 425 426 427 428 429 430 431
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
432 433 434 435
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
436
        assume_pad = False
S
SunAhong1993 已提交
437 438
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
439 440 441
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
442
        else:
S
fix  
SunAhong1993 已提交
443 444 445
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
446 447
        if is_pads_attr:
            paddings = []
S
fix  
SunAhong1993 已提交
448
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
449
                if data_shape:
S
fix  
SunAhong1993 已提交
450
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW
S
SunAhong1993 已提交
451
                if output_shape:
S
fix  
SunAhong1993 已提交
452 453 454 455 456
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads)  # NCHW
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
457
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
                            (2, -1)).transpose().astype("int32").flatten().tolist()
                        layer_attrs['pad'] = paddings
                    else:
                        raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
471
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
472 473 474 475 476
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                if assume_pad:
S
for pad  
SunAhong1993 已提交
477
                    paddle_op = 'paddle.nn.Pad2D'
S
fix  
SunAhong1993 已提交
478
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
479 480 481 482 483 484 485 486
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['padding'] = paddings
                    else:
                        layer_attrs["pad"] = paddings
                        paddle_op = "custom_layer:PadAllDim4WithOneInput"
S
SunAhong1993 已提交
487
            else:
S
fix  
SunAhong1993 已提交
488
                 raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
489 490
            self.paddle_graph.add_layer(
                paddle_op, 
S
SunAhong1993 已提交
491
                inputs={'x': val_x.name}, 
S
fix  
SunAhong1993 已提交
492
                outputs=layer_outputs[1:] if paddle_op == 'paddle.nn.functional.pad' else layer_outputs, 
S
SunAhong1993 已提交
493
                **layer_attrs)
S
fix  
SunAhong1993 已提交
494
            if not op_independent:
S
SunAhong1993 已提交
495
                return node.name + '_paded'
S
SunAhong1993 已提交
496
        else:
S
fix  
SunAhong1993 已提交
497 498
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
499
                if data_shape:
S
fix  
SunAhong1993 已提交
500
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW
S
SunAhong1993 已提交
501
                if output_shape:
S
fix  
SunAhong1993 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len  # NCHW 
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
                        "custom_layer:PadWithTwoInput", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
                                "custom_layer:PadAllDim2", 
                                inputs={'x': val_x.name, 'pad': val_pad.name}, 
                                outputs=layer_outputs, 
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                if assume_pad:
                    self.paddle_graph.add_layer(
                        "custom_layer:PadAllDim4", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs, 
                        value=value,
                        mode=string(mode))
            else:
                print(pads_len)
                raise Exception("The padding value is wrong!")   
S
SunAhong1993 已提交
547 548
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
549 550 551 552 553 554 555

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        layer_attrs = {'axis': axes}
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
556
            if node.name:
S
SunAhong1993 已提交
557 558
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
559 560
                    inputs={"x": val_x.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
561 562
                    shape=[1])
        else:
S
fix  
SunAhong1993 已提交
563 564
            self.paddle_graph.add_layer(
                'paddle.unsqueeze', 
S
SunAhong1993 已提交
565 566
                inputs={"x": val_x.name}, 
                outputs=[node.name],
S
fix  
SunAhong1993 已提交
567
                **layer_attrs)
S
SunAhong1993 已提交
568 569 570 571 572 573 574 575 576

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
            'paddle.nn.functional.hardshrink', 
S
SunAhong1993 已提交
577 578
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
S
SunAhong1993 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
600
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
601 602 603 604 605 606
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
S
SunAhong1993 已提交
607
                outputs=[node.name],
S
SunAhong1993 已提交
608 609 610 611 612
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
613
            self.weights[node.name] = value
S
SunAhong1993 已提交
614 615 616
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
617
                outputs=[node.name],
S
SunAhong1993 已提交
618
                shape=shape,
S
SunAhong1993 已提交
619
                attr=string(node.name),
S
SunAhong1993 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
634
        output_name = node.name
S
SunAhong1993 已提交
635 636 637 638 639
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
640 641
        self.weights[op_name+'.scale'] = self.weights[val_scale.name]
        self.weights[op_name+'.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
642 643 644 645 646
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
647
        if dim == 3:
S
SunAhong1993 已提交
648 649 650 651 652 653 654 655 656
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
            raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.")
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
657
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
658 659 660 661 662 663 664 665
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
666
        name_ones = node.name + '_ones'
S
SunAhong1993 已提交
667
        attr_ones = {
S
SunAhong1993 已提交
668
            'shape': val_shape.name,
S
SunAhong1993 已提交
669 670 671 672 673 674 675 676 677
            'dtype': string(val_x_dtype),
            'fill_value': 1
        }
        self.paddle_graph.add_layer(
            'paddle.full',
            inputs={},
            outputs=[name_ones],
            **attr_ones)
        inputs_dict = {'x': name_ones, 
S
SunAhong1993 已提交
678
                       'y': val_x.name}
S
SunAhong1993 已提交
679 680 681
        self.paddle_graph.add_layer(
            'paddle.multiply',
            inputs=inputs_dict,
S
SunAhong1993 已提交
682
            outputs=[node.name])
S
SunAhong1993 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695

    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
696 697 698
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
699 700
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
701
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
702 703
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
704 705
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
706 707 708 709
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
710
                        outputs=[node.name],
S
SunAhong1993 已提交
711 712 713 714
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
715 716 717
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
718 719 720
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
721
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
722 723
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
724
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
725 726 727 728 729
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
730 731
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
732 733
            self.paddle_graph.add_layer(
                'paddle.transpose', 
S
SunAhong1993 已提交
734 735
                inputs={"x": node.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
736 737 738 739
                perm=perm)
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
740 741
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
742 743 744 745
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
746
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
747 748
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
749
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
750
                    outputs=[indices_cast],
S
SunAhong1993 已提交
751 752
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
753
                output_name = node.name
S
SunAhong1993 已提交
754
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
755
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
756 757 758 759
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
760 761
                    num_embeddings=val_x.out_shapes[0][0],
                    embedding_dim=val_x.out_shapes[0][1])
S
SunAhong1993 已提交
762 763 764
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
765
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
766 767
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
768
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
769 770 771 772 773 774
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
775
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
776
                            'index': indices_reshape},
S
SunAhong1993 已提交
777
                    outputs=[node.name])
S
SunAhong1993 已提交
778 779 780 781 782 783 784 785
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
786 787
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
788 789 790 791
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
792
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
793 794
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
795
                inputs={"x": indices.name},
S
SunAhong1993 已提交
796 797 798 799 800
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
801
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
802 803
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
804
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
805 806 807 808 809 810
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
811 812
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
813 814
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
815
                inputs={"x": node.name},
S
SunAhong1993 已提交
816 817 818 819 820 821 822 823 824 825 826
                outputs=[input_transpose],
                perm=perm)
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
827
                outputs=[node.name],
S
SunAhong1993 已提交
828 829 830 831 832 833 834 835 836 837
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
S
SunAhong1993 已提交
838 839 840 841
                inputs={'x': val_x.name,
                        'index': indices.name,
                        'updates': updates.name},
                outputs=[node.name])
S
SunAhong1993 已提交
842
        else:
S
SunAhong1993 已提交
843
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
844 845 846
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
847 848
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
849 850
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
851
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
852 853
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
854
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
855 856 857 858 859
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
860 861
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
862 863
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
864 865
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
866 867 868
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
869
                inputs={"x": updates.name},
S
SunAhong1993 已提交
870 871 872 873 874 875 876
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
877
                    'index': indices.name,
S
SunAhong1993 已提交
878 879 880
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
881
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
882 883 884
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
885
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
886 887 888
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
889
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
890 891 892 893 894 895
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
896
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
897 898
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
899
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
900 901 902 903 904 905 906
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
907
                outputs=[node.name])
S
SunAhong1993 已提交
908 909 910 911 912 913 914

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
S
SunAhong1993 已提交
915 916 917
        inputs = {'start': val_start.name, 
                  'end': val_limit.name, 
                  'step': val_delta.name}
S
SunAhong1993 已提交
918 919 920
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
921
            outputs=[node.name],
S
SunAhong1993 已提交
922 923 924 925 926 927 928 929 930 931 932
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
933 934
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
935
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
936 937 938 939 940
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
941
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
942 943
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
944 945
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
946 947
                steps = _const_weight_or_none(steps).tolist()
            
S
SunAhong1993 已提交
948 949
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
950 951
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
952
            }
S
SunAhong1993 已提交
953
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
954 955 956 957 958 959 960
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]]:
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
S
SunAhong1993 已提交
961
                    elif ends_value[idx] == 2**31 - 1:
S
SunAhong1993 已提交
962
                        ends_value[idx] = node.out_shapes[0][axes[idx]] + 1 
S
SunAhong1993 已提交
963 964
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
S
SunAhong1993 已提交
965 966 967 968 969 970 971
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
972
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
973 974
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
975
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
976 977 978 979
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
980
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
981 982
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
983 984
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
985
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
986 987 988 989 990 991 992 993 994 995 996 997
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

S
fix  
SunAhong1993 已提交
998

S
SunAhong1993 已提交
999 1000 1001 1002
        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
                'paddle.strided_slice', 
S
SunAhong1993 已提交
1003 1004
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1005 1006 1007 1008
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                'paddle.slice', 
S
SunAhong1993 已提交
1009 1010
                inputs={"input": val_x.name}, 
                outputs=[node.name],  
S
SunAhong1993 已提交
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
            layer_attrs = {
                'dtype': string(dtype),
                'fill_value': value
            }
            self.paddle_graph.add_layer(
                "paddle.full", 
S
SunAhong1993 已提交
1031
                inputs={'shape': val_shape.name}, 
S
SunAhong1993 已提交
1032
                outputs=[node.name],
S
SunAhong1993 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
                **layer_attrs)

    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
S
fix  
SunAhong1993 已提交
1047
            
S
SunAhong1993 已提交
1048 1049
            self.paddle_graph.add_layer(
                'paddle.clip', 
S
SunAhong1993 已提交
1050 1051
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1052 1053
                **layer_attrs)
        else:
S
fix  
SunAhong1993 已提交
1054 1055
            min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
S
SunAhong1993 已提交
1056
            min_value = _const_weight_or_none(min_ipt)
S
fix  
SunAhong1993 已提交
1057
            max_value = _const_weight_or_none(max_ipt)
S
SunAhong1993 已提交
1058 1059 1060 1061 1062 1063 1064 1065
            if max_value.shape == (1, ):
                max_value = max_value[0]
            if min_value.shape == (1, ):
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
            layer_attrs = {'max': max_value, 'min': min_value}
            self.paddle_graph.add_layer(
                'paddle.clip', 
S
SunAhong1993 已提交
1066 1067
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
                **layer_attrs)
        else:
            raise

    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
        layer_attrs = {
            'num_or_sections': split,
            'axis': axis,
        }
        outputs_list = list()
        if isinstance(split, list) or isinstance(split, tuple):
S
SunAhong1993 已提交
1084 1085 1086 1087 1088
            if len(split) == 1:
                outputs_list.append(node.name)
            else:
                for i in range(len(split)):
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
1089
        else:
S
SunAhong1993 已提交
1090
            outputs_list.append(node.name)
S
SunAhong1993 已提交
1091 1092
        self.paddle_graph.add_layer(
            'paddle.split', 
S
SunAhong1993 已提交
1093
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
            outputs=outputs_list, 
            **layer_attrs)

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1108 1109
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1110 1111 1112 1113 1114
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1115 1116
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1117 1118 1119 1120 1121 1122
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1123 1124
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1125
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1126 1127 1128 1129 1130 1131
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1132 1133
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1134 1135
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1136
                outputs=[node.name])
S
SunAhong1993 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
            'paddle.cast', 
S
SunAhong1993 已提交
1152 1153
            inputs={'x': val_input.name}, 
            outputs=[node.name], 
S
SunAhong1993 已提交
1154 1155 1156 1157 1158 1159
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer('paddle.logical_not', 
S
SunAhong1993 已提交
1160 1161
                                    inputs={'x': val_input.name}, 
                                    outputs=[node.name])
S
SunAhong1993 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1185 1186 1187 1188 1189
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1190
        layer_attrs = {
S
SunAhong1993 已提交
1191 1192 1193
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1194 1195 1196 1197 1198
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1199 1200
            inputs={'x': val_x.name}, 
            outputs=layer_outputs, 
S
SunAhong1993 已提交
1201 1202 1203 1204 1205 1206 1207 1208
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1209
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1210 1211 1212 1213 1214 1215 1216
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
            'paddle.concat', 
            inputs={"x": inputs_list}, 
S
SunAhong1993 已提交
1217
            outputs=[node.name], 
S
SunAhong1993 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        output_shape = node.out_shapes[0]
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
            'paddle.reshape', 
S
SunAhong1993 已提交
1236 1237
            inputs={"x": val_x.name}, 
            outputs=[node.name],
S
SunAhong1993 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1250 1251 1252
        val_mm = node.name + '_mm'
        matmul_inputs = {"x": val_a.name, 
                         "y": val_b.name}
S
SunAhong1993 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
            "paddle.scale", 
            inputs={"x": val_mm}, 
            outputs=[val_mm],
            scale=alpha)

        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, 
S
SunAhong1993 已提交
1271
                              "y": val_c.name}
S
SunAhong1993 已提交
1272 1273 1274
                self.paddle_graph.add_layer(
                    "paddle.add",
                    inputs=add_inputs,
S
SunAhong1993 已提交
1275
                    outputs=[node.name])
S
SunAhong1993 已提交
1276
            else:
S
SunAhong1993 已提交
1277
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1278 1279
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1280
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1281 1282 1283 1284
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1285
                    "paddle.add",
S
SunAhong1993 已提交
1286
                    inputs=add_inputs,
S
SunAhong1993 已提交
1287
                    outputs=[node.name])
S
SunAhong1993 已提交
1288 1289 1290 1291 1292

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1293 1294 1295 1296
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1297 1298 1299
        }
        self.paddle_graph.add_layer("paddle.add", 
                                    inputs=inputs_dict, 
S
SunAhong1993 已提交
1300
                                    outputs=[node.name])
S
SunAhong1993 已提交
1301 1302 1303 1304

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1305 1306
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1307 1308 1309 1310
            }
            self.paddle_graph.add_layer(
                "paddle.add", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1311
                outputs=[node.name])
S
SunAhong1993 已提交
1312 1313 1314 1315 1316 1317 1318

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
S
SunAhong1993 已提交
1319 1320
        inputs_dict = {"x": val_x.name, 
                       "y": val_y.name}
S
SunAhong1993 已提交
1321
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1322
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1323 1324
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1325
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1326 1327 1328 1329 1330 1331
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1332
                outputs=[node.name])
S
SunAhong1993 已提交
1333 1334 1335 1336
        else:
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
S
SunAhong1993 已提交
1337
                outputs=[node.name])
S
SunAhong1993 已提交
1338 1339 1340 1341

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1342
        output_name = node.name
S
SunAhong1993 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

C
Channingss 已提交
1354 1355 1356 1357 1358
        _rename_or_remove_weight(self.weights, val_scale.name, op_name+'.weight')
        _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias')
        _rename_or_remove_weight(self.weights, val_var.name, op_name+'._variance')
        _rename_or_remove_weight(self.weights, val_mean.name, op_name+'._mean')

S
SunAhong1993 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
            "paddle.nn.BatchNorm", 
S
SunAhong1993 已提交
1370
            inputs={"x": val_x.name}, 
S
SunAhong1993 已提交
1371 1372 1373 1374 1375 1376
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1377 1378 1379 1380
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1381 1382
        self.paddle_graph.add_layer(
            "paddle.transpose", 
S
SunAhong1993 已提交
1383 1384
            inputs={"x": val_x.name},
            outputs=[node.name], 
S
SunAhong1993 已提交
1385 1386 1387 1388 1389
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1390
        output_name = node.name
S
SunAhong1993 已提交
1391 1392 1393 1394 1395 1396
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1397
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1398 1399
            mode = 'all'

S
SunAhong1993 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
                inputs={}, 
                outputs=[output_name + "__zeros"], 
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name, 
                        "y": output_name + "__zeros"}, 
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name, 
                        "y": output_name + "__zeros"}, 
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={"x": val_slope.name, 
                        "y": output_name + "__min"}, 
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": output_name + "__max", 
                        "y": output_name + "__mul"}, 
                outputs=[output_name])
S
SunAhong1993 已提交
1427
        else:
S
fix  
SunAhong1993 已提交
1428
            if mode == 'channel':
S
SunAhong1993 已提交
1429
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
                if slope_data is None:
                    self.paddle_graph.add_layer(
                        "paddle.reshape", 
                        inputs={"x": val_slope.name}, 
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
                        "paddle.nn.functional.prelu", 
                        inputs={"x": val_x.name,
                                "weight": val_slope.name}, 
                        outputs=[node.name])
                    return
C
Channingss 已提交
1442
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1443
                if len(shape_slope) > 1:
1444
                    self.weights[op_name+'._weight'] = np.reshape(slope_data, shape_slope[0])
S
SunAhong1993 已提交
1445 1446 1447
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
C
Channingss 已提交
1448
                _rename_or_remove_weight(self.weights, val_slope.name)
1449
                self.weights[op_name+'._weight'] = np.reshape(self.weights[val_slope.name], [1])
S
SunAhong1993 已提交
1450 1451 1452 1453
            self.paddle_graph.add_layer(
                "paddle.nn.PReLU", 
                inputs={"x": val_x.name}, 
                outputs=layer_outputs, 
1454
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1455 1456 1457 1458 1459 1460 1461 1462

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1463 1464
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1465 1466 1467 1468
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
                "paddle.squeeze", 
S
SunAhong1993 已提交
1469 1470
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
1471 1472 1473 1474 1475 1476 1477 1478
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1479 1480 1481
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1482 1483 1484 1485 1486 1487 1488

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1489 1490
            inputs={'x': val_x.name,
                    'y': val_y.name},
S
SunAhong1993 已提交
1491
            outputs=[node.name],
S
SunAhong1993 已提交
1492 1493 1494 1495 1496 1497 1498 1499
            param_attr=None)

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1500
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1501 1502
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1503
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1504 1505 1506 1507 1508 1509 1510
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1511
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1512 1513
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1514
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1515 1516
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1517
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1518 1519
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1520
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1521 1522
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1523
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1524 1525
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1526
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1527 1528 1529 1530 1531 1532 1533
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1534
            outputs=[node.name])
S
SunAhong1993 已提交
1535 1536 1537 1538 1539 1540 1541 1542

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
S
SunAhong1993 已提交
1543 1544
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
S
SunAhong1993 已提交
1545 1546
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1547
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1548
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1549 1550 1551 1552
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
S
SunAhong1993 已提交
1553 1554
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
S
SunAhong1993 已提交
1555 1556
            self.paddle_graph.add_layer(
                "paddle.split",
S
SunAhong1993 已提交
1557 1558
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
S
SunAhong1993 已提交
1559 1560 1561 1562
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
                "paddle.concat", 
S
SunAhong1993 已提交
1563 1564
                inputs={"x": val_x.name}, 
                outputs=[node.name])
S
SunAhong1993 已提交
1565 1566 1567 1568 1569 1570

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.assign", 
S
SunAhong1993 已提交
1571 1572
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
SunAhong1993 已提交
1573 1574 1575 1576 1577 1578 1579 1580

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1581
            repeats = val_repeats.name
S
SunAhong1993 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
                    outputs=["{}.tmp".format(repeats)],
                    dtype=string("int32"))
                repeats = "{}.tmp".format(repeats)

        elif isinstance(repeats, int):
            repeats = [repeats]

        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1595
            "name": string(node.name),
S
SunAhong1993 已提交
1596 1597 1598
        }
        self.paddle_graph.add_layer(
            "paddle.tile", 
S
SunAhong1993 已提交
1599 1600
            inputs={"x": val_x.name}, 
                    outputs=[node.name], 
S
SunAhong1993 已提交
1601 1602 1603 1604 1605
                    repeat_times=repeats)

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1606
        output_name = node.name
S
SunAhong1993 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
            
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1640
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1641 1642 1643 1644 1645 1646
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1647
        output_name = node.name
S
SunAhong1993 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1662
            inputs={'x': val_x.name}, 
S
SunAhong1993 已提交
1663 1664 1665 1666 1667 1668
            outputs=layer_outputs, 
            output_size=output_shape[2:])

    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1669
        output_name = node.name
S
SunAhong1993 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1684
            inputs={'x': val_x.name}, 
S
SunAhong1993 已提交
1685 1686 1687 1688 1689 1690
            outputs=layer_outputs, 
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
        op_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
1691
        output_name = node.name
S
SunAhong1993 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
1722
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
S
SunAhong1993 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
C
Channingss 已提交
1732 1733 1734 1735
        remove_weight = True if  val_w.name in self.done_weight_list else False
        if remove_weight:
            self.done_weight_list.append(val_w.name)
        _rename_or_remove_weight(self.weights, val_w.name, op_name+'.weight', remove_weight)
S
SunAhong1993 已提交
1736
        if has_bias:
C
Channingss 已提交
1737 1738 1739 1740
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
                self.done_weight_list.append(val_b_name)
            _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias', remove_bias)
S
SunAhong1993 已提交
1741 1742
        else:
            layer_attrs["bias_attr"] = False
S
fix  
SunAhong1993 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751
        if reduce(lambda x,y:x*y, input_shape) in [1, -1] and 1 not in input_shape:
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
                "paddle.reshape", 
                inputs=layer_inputs, 
                outputs=[layer_inputs["x"]], 
                shape=input_shape)
S
SunAhong1993 已提交
1752 1753
        self.paddle_graph.add_layer(
            paddle_op, 
S
fix  
SunAhong1993 已提交
1754
            inputs=layer_inputs, 
S
SunAhong1993 已提交
1755 1756 1757 1758 1759
            outputs=layer_outputs, 
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
1760 1761 1762
        op_name = name_generator("conv_trans", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
1776
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]

        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
1794

S
fix  
SunAhong1993 已提交
1795
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
1796
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
S
SunAhong1993 已提交
1797
        layer_attrs = {
1798 1799
            "in_channels": num_in_channels,
            "out_channels": num_out_channels,
1800
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
1801 1802 1803
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
1804 1805 1806
            "groups": num_groups,
            "output_padding":out_padding}
            
C
Channingss 已提交
1807
        _rename_or_remove_weight(self.weights, val_w.name, op_name+'.weight',)
S
fix  
SunAhong1993 已提交
1808
        if val_b is not None:
C
Channingss 已提交
1809
            _rename_or_remove_weight(self.weights, val_b.name, op_name+'.bias')
S
SunAhong1993 已提交
1810
        self.paddle_graph.add_layer(
1811
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
1812
            inputs=inputs_dict,
1813
            outputs=layer_outputs,
S
SunAhong1993 已提交
1814
            **layer_attrs)
S
fix  
SunAhong1993 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
        
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'axis': axis,
                      'keepdim': keepdims}
        self.paddle_graph.add_layer(
            'paddle.argmax', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
C
Channingss 已提交
1827 1828
            **layer_attrs)

S
SunAhong1993 已提交
1829
        
C
Channingss 已提交
1830
    @print_mapping_info
S
SunAhong1993 已提交
1831 1832 1833 1834
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.shape", 
S
fix  
SunAhong1993 已提交
1835
            inputs={"input": val_x.name}, 
S
SunAhong1993 已提交
1836
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
1837 1838 1839 1840 1841
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))  
S
SunAhong1993 已提交
1842 1843 1844 1845 1846 1847 1848 1849
        self.paddle_graph.add_layer(
            "paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
        
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1850 1851 1852 1853 1854 1855
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
1856 1857 1858 1859
        self.paddle_graph.add_layer(
            "paddle.sign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
fix  
SunAhong1993 已提交
1860 1861 1862 1863 1864 1865
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": node.name}, 
                outputs=[node.name],
                dtype=string(node.dtype))
S
SunAhong1993 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
        
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
            "custom_layer:OneHot", 
            inputs={"indices": indices.name,
                    "depth": depth.name,
                    "values": values.name}, 
            outputs=layer_outputs,
            axis=axis)
    
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.reciprocal", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
C
Channingss 已提交
1891

1892 1893
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
1894 1895 1896 1897 1898 1899
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
1900
        have_bias = False
C
Channingss 已提交
1901 1902
        if input_nums > 3 and node.layer.input[3] != '':
            bias = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
1903
            have_bias = True
C
Channingss 已提交
1904 1905 1906 1907 1908 1909
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
            sequence_lens = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
            init_h = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
1910 1911 1912 1913 1914 1915
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
                shape=init_h.out_shapes[0]
                )
C
Channingss 已提交
1916 1917 1918
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
            init_c = self.graph.get_input_node(node, idx=exist_input_nums, copy=True)
1919 1920 1921 1922 1923 1924
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
                shape=init_c.out_shapes[0]
                )
C
Channingss 已提交
1925 1926

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
1927
        _rename_or_remove_weight(self.weights, input_weight.name)
1928
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1]/4)
C
Channingss 已提交
1929 1930
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
1931
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
1932
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
1933
        _rename_or_remove_weight(self.weights, bias.name)
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
        input_bias_np = bias_np[:, :4*hidden_size]
        hidden_bias_np = bias_np[:, 4*hidden_size:]

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
            slices = [w[:,x * n: y * n] for x, y in intervals]
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
1944

1945 1946 1947 1948
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
1949

C
Channingss 已提交
1950
        weights = transform_weight_with_bias(
C
Channingss 已提交
1951 1952 1953 1954 1955 1956 1957
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
        yh_out = node.output(1) 
        yc_out = node.output(2)
1958
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            print(param_names)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

1974 1975 1976
        if direction == 'backward':
            raise Exception("LSTM support 'forward' or 'bidirectional', except '{}'.".format(direction))
        else:
C
Channingss 已提交
1977 1978 1979
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
1980

C
Channingss 已提交
1981 1982 1983 1984 1985 1986 1987
        self.paddle_graph.add_layer(
            'paddle.nn.LSTM', 
            inputs={'input': x.name, 'initial_states': (init_h.name, init_c.name)},
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
1988
            direction=string(direction),
C
Channingss 已提交
1989 1990 1991 1992 1993 1994
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
1995
            shape=[0, 0, -1, hidden_size]
C
Channingss 已提交
1996 1997 1998 1999 2000 2001 2002
            )
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
            perm=[0,2,1,3]
            )
S
SunAhong1993 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
        
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
        layer_attrs["largest"] = True if node.get_attr('largest', 1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted', 1) == 1 else False
        self.paddle_graph.add_layer(
            "paddle.topk", 
            inputs={"x": val_x.name,
                    "k": val_k.name}, 
            outputs=["{}_p{}".format(node.layer_name, 0), "{}_p{}".format(node.layer_name, 1)],
            **layer_attrs)