onnx_op_mapper.py 44.9 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode
from x2paddle.core.op_mapper import OpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping_field_values
from x2paddle.op_mapper.onnx_directly_map import default_op_mapping
from x2paddle.op_mapper.onnx_directly_map import default_ioa_constraint
C
channingss 已提交
23
from x2paddle.op_mapper.onnx_custom_layer import *
C
channingss 已提交
24
from x2paddle.core.util import string
C
update  
channingss 已提交
25
import numpy as np
C
channingss 已提交
26
import onnx
C
channingss 已提交
27
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
28
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
29 30
import logging as _logging
from collections import OrderedDict as _dict
C
channingss 已提交
31
import math
C
channingss 已提交
32 33
import os
import shutil
C
update  
channingss 已提交
34 35 36 37 38 39

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
    if 'Constant' in node.layer_name:
C
channingss 已提交
40
        return node.value
C
update  
channingss 已提交
41 42 43 44 45
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
46 47 48 49 50 51 52 53
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


54 55 56 57 58 59 60 61
class ONNXOpMapper(OpMapper):        
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
        'Pow': 'elementwise_pow',}
    
C
channingss 已提交
62
    def __init__(self, decoder, save_dir):
C
update  
channingss 已提交
63 64 65 66 67 68
        super(ONNXOpMapper, self).__init__()
        self.decoder = decoder
        self.graph = decoder.onnx_graph
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
69
        self.used_custom_layers = dict()
C
channingss 已提交
70 71 72
        self.is_inference = False
        self.tmp_data_dir = os.path.join(save_dir, 'tmp_data')
        self.get_output_shapes()
73
        
C
update  
channingss 已提交
74 75
        if not self.op_checker():
            raise Exception("Model are not supported yet.")
76
            
C
update  
channingss 已提交
77
        #mapping op
C
updatea  
channingss 已提交
78 79 80 81 82
        print("Total nodes: {}".format(
            sum([
                isinstance(node, ONNXGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
C
update  
channingss 已提交
83 84 85 86 87 88 89
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in default_op_mapping:
C
channingss 已提交
90
                self.directly_map(node)
C
channingss 已提交
91 92
            elif op in custom_layers:
                self.deal_custom_layer(node)
93 94
            elif op in self.elementwise_ops:
                self.elementwise_map(node)
C
update  
channingss 已提交
95

C
channingss 已提交
96 97
        self.remove_tmp_data()

C
update  
channingss 已提交
98 99 100 101 102
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
103 104 105 106
            if not hasattr(self, op) and \
                op not in default_op_mapping and \
                op not in custom_layers and \
                op not in self.elementwise_ops:
C
update  
channingss 已提交
107 108 109 110 111 112 113 114 115 116
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False

C
channingss 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def get_results_of_inference(self, model, value_infos, data_nodes):
        inputs = []
        for data_node in data_nodes:
            value_info = value_infos[data_node]
            ipt = np.random.random(value_info['shape']).astype(
                value_info['dtype'])
            inputs.append(ipt)

        model = onnx.shape_inference.infer_shapes(model)
        outputs = []
        for value_info in model.graph.value_info:
            outputs.append(value_info)

        model.graph.ClearField('output')
        model.graph.output.MergeFrom(outputs)
        if not os.path.exists(self.tmp_data_dir):
            os.makedirs(self.tmp_data_dir)
        onnx.save(model, os.path.join(self.tmp_data_dir,
                                      'onnx_model_infer.onnx'))
        np.save(os.path.join(self.tmp_data_dir, 'input_data.npy'), inputs)
        os.system('onnx_infer --save_dir=' + self.tmp_data_dir)
        return

    def get_dynamic_shape(self, layer):
        """
        get dynamic shape from infer_result
        """
144 145 146 147
        path = os.path.join(self.tmp_data_dir, layer + '.npy')
        if not os.path.exists(path):
            return [None, None, None]
        output = np.load(path)
C
channingss 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        return output.tolist(), output.dtype, output.shape

    def get_output_shapes(self):
        """
        build topo_sort of ONNX model
        """
        nodes = self.decoder.model.graph.node
        node_map = self.decoder.onnx_graph.node_map
        value_infos = self.decoder.onnx_graph.value_infos
        onnx_model = self.decoder.model
        for layer in nodes:
            node = node_map[layer.name]
            for opt in layer.output:
                if opt in value_infos:
                    value_info = value_infos[opt]
                    if len(value_info['shape']
164
                           ) == 0 or value_info['dtype'] is None or 0 in value_info['shape']:
C
channingss 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
                        if self.is_inference == False:
                            self.get_results_of_inference(
                                onnx_model, value_infos,
                                self.decoder.onnx_graph.place_holder_nodes)
                            self.is_inference = True
                        _, dtype, shape = self.get_dynamic_shape(opt)
                        node.out_shapes.append(shape)
                        node.dtype = dtype
                    else:
                        node.dtype = value_info['dtype']
                        node.out_shapes.append(value_info['shape'])
                else:
                    if self.is_inference == False:
                        self.get_results_of_inference(
                            onnx_model, value_infos,
                            self.decoder.onnx_graph.place_holder_nodes)
                        self.is_inference = True
                    _, dtype, shape = self.get_dynamic_shape(opt)
                    node.dtype = dtype
                    node.out_shapes.append(shape)

    def remove_tmp_data(self):
        """
        remove temporarily generated file
        """
        if os.path.exists(self.tmp_data_dir):
            import shutil
            shutil.rmtree(self.tmp_data_dir)

C
channingss 已提交
194
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
        info = default_op_mapping[op_type]
        info.extend(list(default_op_mapping_field_values.values())[len(info):])
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
            fill_name_field,
        ) = info

        if fluid_op in default_ioa_constraint:
            for predicate, message in default_ioa_constraint[fluid_op]:
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
226
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
227
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
228 229 230 231
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
232 233 234
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
235 236
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
        if fluid_op not in ['shape']:
C
update  
channingss 已提交
237 238
            attr['name'] = string(node.layer_name)
        node.fluid_code.add_layer(fluid_op,
C
channingss 已提交
239
                                  inputs=val_inps[0],
C
update  
channingss 已提交
240 241 242
                                  output=val_outs[0],
                                  param_attr=attr)

C
channingss 已提交
243 244 245
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
246
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
247 248 249 250
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        node.fluid_code.add_layer(func.__code__.co_name,
C
channingss 已提交
251
                                  inputs=node.inputs,
C
channingss 已提交
252 253 254 255 256
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
257
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
258 259 260
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        
        if len(val_x.out_shapes[0])<len(val_y.out_shapes[0]):
            val_x, val_y = val_y, val_x
        
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
        
        slice_idx = 0
        for dim in val_y_shape:
            if dim == 1:
                slice_idx += 1
            else:
                break
                
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
            node.fluid_code.add_layer('reshape',
                                      inputs=val_y,
                                      output=var_y_reshaped,
                                      param_attr=attr_reshaped)
            inputs = {'x': val_x, 'y': var_y_reshaped}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
        else:
            inputs = {'x': val_x, 'y': val_y}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
303

C
update  
channingss 已提交
304
    def place_holder(self, node):
C
channingss 已提交
305
        self.input_shapes.append(node.out_shapes[0])
C
update  
channingss 已提交
306 307
        attr = {
            "dtype": string(node.dtype),
C
channingss 已提交
308
            "shape": node.out_shapes[0],
C
update  
channingss 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
322
        shape = node.out_shapes[0]
C
update  
channingss 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'attr': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
350
    def _interpolate(self, node):
C
channingss 已提交
351 352
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
353
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
354
        
C
channingss 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        out_shape_ = val_y.out_shapes[0]
        if out_shape_ is not None:
            assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape_ = out_shape_[2:]
        scales = _const_weight_or_none(val_scales)
        if scales is not None:
            assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
            assert scales[0] == 1 and scales[
                1] == 1, 'only scale on (NC)HW supported'
            assert scales[2] == scales[
                3], 'only aspect-ratio-invariant scale supported'
        scale = scales[2] if scales else None
        if scale is None:
            assert out_shape_, 'neither scales nor output shape is available'
            out_shape = out_shape_
        else:
            out_shape = None
            if out_shape_ is None:
                in_shape = val_x.out_shapes[0]
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
                out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]
378
        
C
channingss 已提交
379
        mode = node.get_attr('mode', 'nearest')
380
        
C
channingss 已提交
381
        fluid_op = 'resize_{}'.format(mode)
382 383 384 385 386 387 388
        if 'linear' in mode:
            print('Warnning: paddle not support resize wiht mode: linear, we use bilinear replace linear')
            fluid_op = 'resize_bilinear'
        
        if isinstance(val_scales, ONNXGraphNode):
            scale, _, _ = self.get_dynamic_shape(val_scales.layer_name)
            
C
channingss 已提交
389 390 391 392 393 394 395 396 397 398
        attr = {
            'scale': scale,
            'out_shape': out_shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
399
    def Pad(self, node, op_independent=True):
C
channingss 已提交
400
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
401 402 403
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
404 405
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
427 428 429 430
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)
        else:
            attr['name'] = string(node.layer_name + '_paded')
            node.fluid_code.add_layer(fluid_op,
                                      inputs=val_x,
                                      output=node.layer_name + '_paded',
                                      param_attr=attr)
            return node.layer_name + '_paded'

    def Unsqueeze(self, node):
C
channingss 已提交
447
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
448
        axes = node.get_attr('axes')
449 450 451
        
        if len(val_x.out_shapes[0])==0:
            node.fluid_code.add_layer('assign',
C
update  
channingss 已提交
452 453
                                  inputs=val_x,
                                  output=node,
454 455 456 457 458 459 460 461 462 463
                                  param_attr=None)
        else:
            attr = {'axes': axes, 'name': string(node.layer_name)}
            node.fluid_code.add_layer('unsqueeze',
                                      inputs=val_x,
                                      output=node,
                                      param_attr=attr)


            
C
update  
channingss 已提交
464

C
channingss 已提交
465
    def Shrink(self, node):
C
channingss 已提交
466
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
467 468 469 470 471 472 473 474 475
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
        node.fluid_code.add_layer('hard_shrink',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
476 477 478 479 480 481 482 483 484 485 486
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)
        if shape is None:
C
channingss 已提交
487
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
488 489 490 491 492 493 494 495 496
        if shape is None:
            shape = list(value.shape)
            _logger.warning(
                'in (Constant -> %s): '
                'attribute "shape" of %s not inferred, '
                'using value as 1-D tensor may lead to fails',
                val_output.layer_name, val_output.layer_name)

        if len(value) == 1:  # scalar
C
channingss 已提交
497
            value = value.tolist()
C
update  
channingss 已提交
498 499 500 501 502 503 504 505 506
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
channingss 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520
        else:
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'attr': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
C
update  
channingss 已提交
521 522

    def Resize(self, node):
C
channingss 已提交
523 524
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
525
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
526

C
channingss 已提交
527
        out_shape_ = val_y.out_shapes[0]
C
update  
channingss 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
        if out_shape_ is not None:
            assert len(out_shape_) == 4, 'only 4-D Tensor as X and Y supported'
            out_shape_ = out_shape_[2:]
        scales = _const_weight_or_none(val_scales)
        if scales is not None:
            assert len(scales) == 4, 'only 4-D Tensor as X and Y supported'
            assert scales[0] == 1 and scales[
                1] == 1, 'only scale on (NC)HW supported'
            assert scales[2] == scales[
                3], 'only aspect-ratio-invariant scale supported'
        scale = scales[2] if scales else None
        if scale is None:
            assert out_shape_, 'neither scales nor output shape is available'
            out_shape = out_shape_
        else:
            out_shape = None
            if out_shape_ is None:
C
channingss 已提交
545
                in_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
                assert in_shape is not None, 'out_shape required but not inferrable'
                assert len(
                    in_shape) == 4, 'only 4-D Tensor as X and Y supported'
                out_shape_ = [in_shape[2] * scale, in_shape[3] * scale]

        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
        attr = {
            'scale': scale,
            'out_shape': out_shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
channingss 已提交
563 564 565
    def Upsample(self, node):
        self._interpolate(node)

C
channingss 已提交
566 567 568 569 570 571
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis')
        assert len(
C
channingss 已提交
572 573
            indices_shape) <= 1, "Gather op don't support dim of indice >1 "
        if axis == 0 and len(indices_shape) <= 1:
C
channingss 已提交
574
            node.fluid_code.add_layer('gather',
C
channingss 已提交
575 576 577 578
                                      inputs={
                                          'input': val_x,
                                          'index': indices
                                      },
C
channingss 已提交
579 580
                                      output=node,
                                      param_attr=None)
C
channingss 已提交
581 582
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
583 584 585 586 587 588 589 590
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
            node.fluid_code.add_layer('transpose',
                                      inputs=val_x,
                                      output=name_trans,
                                      param_attr=attr_trans)
            node.fluid_code.add_layer('gather',
C
channingss 已提交
591 592 593 594
                                      inputs={
                                          'input': name_trans,
                                          'index': indices
                                      },
C
channingss 已提交
595 596 597 598 599 600 601
                                      output=node,
                                      param_attr=None)
            node.fluid_code.add_layer('transpose',
                                      inputs=node,
                                      output=node,
                                      param_attr=attr_trans)

C
channingss 已提交
602
    def Slice(self, node):
C
channingss 已提交
603
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        val_starts, val_ends, val_axes, val_steps = None, None, None, None
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            axes = self.graph.get_input_node(node, idx=3, copy=True)
            steps = self.graph.get_input_node(node, idx=4, copy=True)

            self.omit_nodes.append(starts.layer_name)
            self.omit_nodes.append(ends.layer_name)
            self.omit_nodes.append(axes.layer_name)
            self.omit_nodes.append(steps.layer_name)

            starts = _const_weight_or_none(starts).copy()
            ends = _const_weight_or_none(ends).copy()
            axes = _const_weight_or_none(axes)
            steps = _const_weight_or_none(steps)
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
C
channingss 已提交
624

C
channingss 已提交
625 626 627 628 629 630
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        shape = val_x.out_shapes[0]

        if shape is not None:
            for idx, value in enumerate(starts):
C
channingss 已提交
631 632
                if value > shape[axes[idx]]:
                    starts[idx] = shape[axes[idx]]
C
channingss 已提交
633
            for idx, value in enumerate(ends):
C
channingss 已提交
634 635
                if value > shape[axes[idx]]:
                    ends[idx] = shape[axes[idx]]
C
channingss 已提交
636 637 638 639 640 641
        attr = {"axes": axes, "starts": starts, "ends": ends}
        node.fluid_code.add_layer('slice',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

C
update  
channingss 已提交
642
    def ConstantOfShape(self, node):
C
channingss 已提交
643
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
644
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
645 646 647
        shape = _const_weight_or_none(val_shape)

        if shape is None:
C
channingss 已提交
648
            shape = node.out_shapes[0]
C
update  
channingss 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

        assert shape is not None, (
            'given shape is neither const value nor deductible from output, '
            'this is not supported')

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        if len(value) == 1:
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
            node.fluid_code.add_layer('fill_constant',
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)

    def Split(self, node):
C
channingss 已提交
669 670
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
671 672

        fluid_op = 'split'
C
channingss 已提交
673
        split = node.get_attr('split')
C
update  
channingss 已提交
674
        axis = node.get_attr('axis', 0)
C
channingss 已提交
675 676 677 678 679
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
C
update  
channingss 已提交
680 681
        # generation
        node.fluid_code.add_layer('split',
C
channingss 已提交
682 683
                                  inputs=val_x,
                                  output=val_y,
C
update  
channingss 已提交
684 685 686
                                  param_attr=attr)

    def Reshape(self, node):
C
channingss 已提交
687 688
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
689 690
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape = None
C
channingss 已提交
691

C
update  
channingss 已提交
692 693 694 695 696
        if isinstance(val_shape, ONNXGraphDataNode):
            self.omit_nodes.append(val_shape.layer_name)

        # catch dynamic graph shape
        if isinstance(val_shape, ONNXGraphNode):
C
channingss 已提交
697
            shape, _, _ = self.get_dynamic_shape(val_shape.layer_name)
C
channingss 已提交
698

C
update  
channingss 已提交
699
        if shape is None:
C
channingss 已提交
700
            shape = val_reshaped.out_shapes[0]
C
update  
channingss 已提交
701 702 703 704 705 706

        shape_dtype = val_shape.dtype

        if shape_dtype is None:
            _logger.warning(
                'in op %s(%s -> Reshape -> %s): '
C
channingss 已提交
707 708
                'dtype of input "shape" not inferred, int32 assumed',
                node.layer_name, val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
709 710
            shape_dtype = _np.dtype('int32')
        if shape is None:
C
channingss 已提交
711
            shape = [1, -1]
C
update  
channingss 已提交
712 713 714
            _logger.warning(
                'in %s(%s -> Reshape -> %s): '
                'input "shape" not inferred, use [1, -1] as dummy value, '
C
channingss 已提交
715 716
                'the behavior of Paddle fluid maybe undefined', node.layer_name,
                val_x.layer_name, val_reshaped.layer_name)
C
update  
channingss 已提交
717 718 719 720 721 722 723 724
        attr = {'shape': shape, 'name': string(node.layer_name)}

        node.fluid_code.add_layer('reshape',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Cast(self, node):
C
channingss 已提交
725
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
        node.fluid_code.add_layer('cast',
                                  inputs=val_input,
                                  output=node,
                                  param_attr=attr)

    def AveragePool(self, node):
C
channingss 已提交
742
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
743 744

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
745 746 747 748 749 750 751 752
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
753

C
channingss 已提交
754 755
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
756
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
757
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
758 759 760 761 762 763
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
782
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
783 784 785 786 787 788 789
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
        node.fluid_code.add_layer('concat',
C
channingss 已提交
790
                                  inputs=inputs,
C
update  
channingss 已提交
791 792 793 794
                                  output=node,
                                  param_attr=attr)

    def Flatten(self, node):
C
channingss 已提交
795
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
796 797 798 799 800 801 802 803
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
        node.fluid_code.add_layer('flatten',
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Gemm(self, node):
C
channingss 已提交
804 805 806
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
        node.fluid_code.add_layer('matmul',
                                  inputs=matmul_inputs,
                                  output=val_mm,
                                  param_attr=attr_matmul)
C
channingss 已提交
824

C
update  
channingss 已提交
825 826 827 828 829 830 831 832 833
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
            else:
C
channingss 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
                node.fluid_code.add_layer("Constant",
                                          inputs=matmul_beta_inputs,
                                          output=var_beta,
                                          param_attr={'value': beta})

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs=add_inputs,
                                          output=node,
                                          param_attr=attr)
C
update  
channingss 已提交
847

C
channingss 已提交
848

C
update  
channingss 已提交
849
    def Sum(self, node):
850
        val_inps = node.layer.input
851
        inputs = {
C
channingss 已提交
852 853
            "x": self.graph.get_input_node(node, idx=0, copy=True),
            "y": self.graph.get_input_node(node, idx=1, copy=True),
854 855
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
856

C
channingss 已提交
857 858
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
859 860
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
861
                "y": y,
862 863 864 865
            }
            node.fluid_code.add_layer("elementwise_add",
                                      inputs=inputs,
                                      output=node)
C
update  
channingss 已提交
866 867

    def MatMul(self, node):
C
channingss 已提交
868 869
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
870 871 872 873 874 875 876 877
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def BatchNormalization(self, node):
C
channingss 已提交
878 879 880 881 882
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
883 884 885 886 887 888 889 890 891

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
892 893
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
894 895 896 897
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
898
            "is_test": True,
C
update  
channingss 已提交
899 900 901 902
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
903
            "use_global_stats": spatial,
C
update  
channingss 已提交
904 905 906 907 908 909 910 911
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
C
channingss 已提交
912
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
913 914 915 916 917 918 919 920
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
        node.fluid_code.add_layer("transpose",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Relu(self, node):
C
channingss 已提交
921
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
922 923 924 925 926 927 928
        attr = {"name": string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def PRelu(self, node):
C
channingss 已提交
929 930
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
931

C
channingss 已提交
932 933 934 935 936 937 938 939 940 941
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
C
update  
channingss 已提交
942 943 944 945 946 947
        node.fluid_code.add_layer("prelu",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Squeeze(self, node):
C
channingss 已提交
948 949 950
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
C
update  
channingss 已提交
951 952 953 954 955 956
        node.fluid_code.add_layer("squeeze",
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Identity(self, node):
C
channingss 已提交
957
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
958 959 960
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)

    def MaxPool(self, node):
C
channingss 已提交
961
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
962

C
channingss 已提交
963
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
964 965 966 967 968 969 970 971 972 973 974
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
975

C
channingss 已提交
976 977
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
978
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
979
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
980 981 982 983 984 985
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def GlobalAveragePool(self, node):
C
channingss 已提交
1001
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1002
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
channingss 已提交
1003 1004
        input_shape = val_x.out_shapes[0]
        output_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        assert input_shape is not None or output_shape is not None, 'poolnd not inferred'  # N
        if input_shape:
            poolnd = len(input_shape) - 2  # NC...
        elif output_shape:
            poolnd = len(output_shape) - 2  # NC...
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
        fluid_op = 'pool{}d'.format(poolnd)
        attr = {
            "pool_type": string("avg"),
            "global_pooling": True,
            "name": string(node.layer_name)
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)

    def Conv(self, node):
C
channingss 已提交
1023 1024
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1025 1026 1027 1028 1029 1030
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1031
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1032 1033 1034
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1035
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1036 1037
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1038
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1039 1040 1041 1042 1043 1044 1045
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1046
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1047 1048
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1049
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)
C
channingss 已提交
1074 1075

    def ConvTranspose(self, node):
C
channingss 已提交
1076 1077 1078
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1079 1080 1081 1082 1083 1084 1085 1086

        self.omit_nodes.append(val_w.layer_name)
        self.omit_nodes.append(val_b.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1087
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1088 1089 1090
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1091
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1092 1093
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1094 1095 1096 1097 1098
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1099 1100 1101 1102

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1103

C
channingss 已提交
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        output_size[0] = (val_x.out_shapes[0][2] -
                          1) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] -
                          1) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
            'bias_attr': string(val_b.layer_name),
            'name': string(node.layer_name),
        }
        node.fluid_code.add_layer(fluid_op,
                                  inputs=val_x,
                                  output=node,
                                  param_attr=attr)