prim.py 24.2 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import numpy as np
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

    TorchScript示例:
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
S
SunAhong1993 已提交
29
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
30 31 32 33 34 35
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
    output_type = output.type()
    if isinstance(value, str):
        value = string(value)
S
SunAhong1993 已提交
36
    if "Tensor" in str(output_type):
S
SunAhong1993 已提交
37
        tensor_value = value
S
SunAhong1993 已提交
38
        value = "{}".format(value)
S
SunAhong1993 已提交
39
        if "tensor" in value:
S
SunAhong1993 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
            if isinstance(tensor_value, list) or isinstance(tensor_value, tuple):
                name_dict = dict()
                for i, tv in enumerate(tensor_value):
                    output_name_i = "{}_p{}".format(output_name,i)
                    key_i = "input{}".format(i)
                    mapper.paddle_params[output_name_i] = tv.cpu().detach().numpy()
                    graph.add_layer(
                        "self.create_parameter",
                        inputs={},
                        outputs=[output_name_i],
                        scope_name=scope_name,
                        dtype=string(str(mapper.paddle_params[output_name_i].dtype)),
                        shape = mapper.paddle_params[output_name_i].shape,
                        default_initializer="paddle.nn.initializer.Constant(value=0.0)")
                    name_dict[key_i] = output_name_i
                graph.add_layer(
                    "prim.list",
                    inputs=name_dict,
                    outputs=[output_name],
                    scope_name=scope_name)
                return [], [output_name]
            else:
S
SunAhong1993 已提交
62 63 64 65 66 67 68 69 70 71 72
#                 mapper.pytorch_params[output_name] = tensor_value.cpu().detach().numpy()
                mapper.paddle_params[output_name] = tensor_value.cpu().detach().numpy()
                graph.add_layer(
                        "self.create_parameter",
                        inputs={},
                        outputs=[output_name],
                        scope_name=scope_name,
                        dtype=string(str(mapper.paddle_params[output_name].dtype)),
                        shape = mapper.paddle_params[output_name].shape,
                        default_initializer="paddle.nn.initializer.Constant(value=0.0)")
                return [], [output_name]
S
SunAhong1993 已提交
73 74 75 76 77 78 79 80 81 82 83
    if "inf" in str(value):
        t = str(type(value)).split("'")[1]
        if str(value).startswith("-"):
            value = "-{}({})".format(t, string(str(value)[1:]))
        else:
            value = "{}({})".format(t, string(str(value)))
    if "9223372036854775807" in str(value):
        import math
        value = int(math.pow(2, 31) - 1)
    mapper.attrs[output_name] = value
    graph.add_layer(
S
SunAhong1993 已提交
84
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=value)
S
SunAhong1993 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
    return [], [output_name]


def prim_data(mapper, graph, node):
    """ 构造Tensor的PaddleLayer。

    TorchScript示例:
        %4336 : Tensor = prim::data(%out.6)
        参数含义:
        %4336 (Tensor): 输出Tensor。
        %out.6 (Tensor): 原始Tensor。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
99
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
100 101 102 103 104 105 106 107
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4336
S
SunAhong1993 已提交
108
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
109 110 111 112
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
113
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
114 115 116
    return current_inputs, current_outputs


S
SunAhong1993 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def prim_DictConstruct(mapper, graph, node):
    """ 构建dict。
    
    TorchScript示例:
        %32 : Dict(str, Tensor) = prim::DictConstruct(%30, %23, %31, %29)
        参数含义:
        %32 (dict): 组成的字典。
        %30 (str): key。
        %23 (-): value。
        %31 (str): key。
        %29 (-): value。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        if i%2 == 0:
            layer_attrs["key{}".format(int(i/2))] = mapper.attrs[input_name]
        else:
            layer_inputs["value{}".format(int(i/2))] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.dict_construct", 
                    inputs=layer_inputs, 
                    outputs=layer_outputs, 
                    scope_name=scope_name,
                    **layer_attrs)
    return current_inputs, current_outputs



S
SunAhong1993 已提交
155 156 157 158 159 160 161 162 163
def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

    TorchScript示例:
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
S
SunAhong1993 已提交
164
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    current_node = node
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
    attr_name = ".".join(field_name_list)
    output_name = mapper._get_outputs_name(current_node, attr_name)[0]
    part_script = mapper.script
    for field_name in field_name_list:
        if hasattr(part_script, field_name):
            param = getattr(part_script, field_name)
            if isinstance(param, torch.Tensor):
S
SunAhong1993 已提交
181
                param = param.cpu().detach().numpy()
S
SunAhong1993 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
                if len(param.shape) == 0:
                    param = np.reshape(param, 1)
                if str(param.dtype) == "uint8":
                    param = param.astype("int32")
            mapper.pytorch_params[output_name] = param
            part_script = param
    return [], [output_name]


def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

    TorchScript示例:
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
S
SunAhong1993 已提交
208
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
209 210 211 212 213 214
    outputs_name = mapper._get_outputs_name(node)
    node_outputs = outputs_name.copy()
    current_outputs = outputs_name.copy()
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
S
SunAhong1993 已提交
215 216
    mapper._check_input(graph, input_node, input_node_name, current_outputs, scope_name)
    graph.add_layer("prim.if", inputs={'input': input_node_name}, outputs=node_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
    return list(current_layer.inputs.values()), current_outputs


def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

    TorchScript示例:
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
        %86 (list): list节点输出。
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
    """
S
SunAhong1993 已提交
243
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
244 245 246 247 248 249 250 251
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
S
SunAhong1993 已提交
252
        mapper._check_input(graph, inputs_node[i], input_name, current_outputs, scope_name)
S
SunAhong1993 已提交
253 254 255 256
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
257 258
    layer_id = graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
    mapper.output2id[output_name] = layer_id
S
SunAhong1993 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
    return current_inputs, current_outputs


def prim_ListUnpack(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %x1.4 : Tensor, %x2.4 : Tensor = prim::ListUnpack(%4354)
        参数含义:
        %x1.4 (Tensor): 输出,list的第一个元素。
        %x2.4 (Tensor): 输出,list的第二个元素。
        %4354 (list): 列表。
    """
S
SunAhong1993 已提交
272
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
273 274 275 276 277 278 279
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name.copy()
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = layer_outputs.copy()
    # 处理输入0,即%4354
S
SunAhong1993 已提交
280
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
281 282 283 284 285
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
286
        "prim.list_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    mapper.split_len[list(layer_inputs.values())[0]] = len(layer_outputs)
    return current_inputs, current_outputs


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

    TorchScript示例:
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
307
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    node_outputs = mapper._get_outputs_name(node)
    loop_inputs = {}
    block = list(node.blocks())[0]
    loop_outputs = node_outputs.copy()
    for i, block_input_ivalue in enumerate(block.inputs()):
        if i == 0:
            block_input_node_name = '_x' + str(mapper.output_index)
        else:
            block_input_node_name = 'x' + str(mapper.output_index)
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
327
                                node_outputs, scope_name)
S
SunAhong1993 已提交
328 329 330 331 332 333 334 335 336
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
337
                                node_outputs, scope_name)
S
SunAhong1993 已提交
338 339 340
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
S
SunAhong1993 已提交
341 342
                outputs=[block_input_node_name],
                scope_name=scope_name)
S
SunAhong1993 已提交
343 344
            node_outputs.append(block_input_node_name)

S
SunAhong1993 已提交
345
    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    current_layer = list(graph.layers.values())[-1]
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

    TorchScript示例:
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
S
SunAhong1993 已提交
365
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
366 367 368 369 370 371 372
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
373
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
374 375 376 377
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
378
    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
379 380 381 382 383 384 385 386 387 388 389 390
    return current_inputs, current_outputs


def prim_NumToTensor(mapper, graph, node):
    """ 构造转为Tensor的PaddleLayer。

    TorchScript示例:
        %other.2 : Tensor = prim::NumToTensor(%1736)
        参数含义:
        %other.2 (Tensor): 输出。
        %1736 (-): 输入。
    """
S
SunAhong1993 已提交
391
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
392 393 394 395 396 397 398 399
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
400 401 402
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    inputs_inputs_name, inputs_inputs_node = mapper._get_inputs_name(inputs_node[0])
    if inputs_node[0].kind() == "aten::size" and len(inputs_inputs_name) > 1:
S
SunAhong1993 已提交
403 404 405 406
        layer_inputs["input"] = inputs_name[0]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
407
            "prim_equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
408
    else:
S
SunAhong1993 已提交
409
        layer_inputs["fill_value"] = inputs_name[0]
S
SunAhong1993 已提交
410 411 412 413 414 415
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        input_type = list(node.inputs())[0].type()
        layer_attrs["dtype"] = input_type
        layer_attrs["shape"] = [1]
        graph.add_layer(
S
SunAhong1993 已提交
416
            "paddle.full",
S
SunAhong1993 已提交
417 418
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
419
            scope_name=scope_name,
S
SunAhong1993 已提交
420 421 422 423 424 425 426 427 428 429 430 431
            **layer_attrs)
    return current_inputs, current_outputs


def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

    TorchScript示例:
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
S
SunAhong1993 已提交
432
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
433 434 435 436 437 438 439
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%76
S
SunAhong1993 已提交
440
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
441 442 443 444 445
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
446
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
447 448 449 450 451 452 453 454 455 456 457 458
    return current_inputs, current_outputs


def prim_requires_grad(mapper, graph, node):
    """ 构造是否计算梯度的PaddleLayer。

    TorchScript示例:
        %356 : bool = prim::requires_grad(%tensor.31)
        参数含义:
        %356 (bool): 输出,当前Tensor是否计算梯度。
        %tensor.31 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
459
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
460 461 462 463 464 465 466
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
467
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
468 469 470 471 472
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
473
        "prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
474 475 476 477 478 479 480 481 482 483 484 485
    return current_inputs, current_outputs


def prim_SetAttr(mapper, graph, node):
    """ 设置attribute信息。

    TorchScript示例:
        = prim::SetAttr[name="num_batches_tracked"](%260, %277)
        参数含义:
        %260 (-): 属性名前缀。
        %277 (-): 需要设置的值。
    """
S
SunAhong1993 已提交
486
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = []
    tmp_node = node
    while True:
        input_node = list(tmp_node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            tmp_node = input_node
        except Exception:
            break
    field_name_list.append(node.s('name'))

    inputs_name, inputs_node = mapper._get_inputs_name(node)
    param = {
        "Tensor": "self." + ".".join(field_name_list).replace(".", "_"),
        "parent_layer_id": graph.parent_layer.id
    }
    mapper.pytorch_params[".".join(field_name_list)] = param
    graph.add_layer(
        "prim.set_attr",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
508 509
        outputs=["self." + ".".join(field_name_list).replace(".", "_")],
        scope_name=scope_name)
S
SunAhong1993 已提交
510 511 512 513 514 515 516 517 518 519 520 521
    return [], [output_name]


def prim_shape(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %4701 : int[] = prim::shape(%result.1)
        参数含义:
        %4701 (list): 输出,shape信息。
        %result.1 (Tensor): 需要获取shape的值。
    """
S
SunAhong1993 已提交
522
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
523 524 525 526 527 528 529
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
530
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
531 532 533 534 535
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
536
        "paddle.shape", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
    return current_inputs, current_outputs


def prim_TupleConstruct(mapper, graph, node):
    """ 构造tuple的PaddleLayer。

    TorchScript示例:
        %4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
        参数含义:
        %4492 (tuple): 输出,tuple。
        %x.46 (Tensor/其他): tuple第一个元素信息。
        %aux (Tensor/其他): tuple第二个元素信息。
    """
S
SunAhong1993 已提交
550
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
551 552 553 554 555 556 557 558 559 560 561 562
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
563
    graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576
    return current_inputs, current_outputs


def prim_TupleUnpack(mapper, graph, node):
    """ 构造获取tuple元素的PaddleLayer。

    TorchScript示例:
        %x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
        参数含义:
        %x.223 (Tensor/其他): 输出,tuple第一个元素信息。
        %aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
        %4492 (tuple): 需要获取元素的tuple。
    """
S
SunAhong1993 已提交
577
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
578 579 580
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name
    layer_inputs = {}
S
add gru  
SunAhong1993 已提交
581
    layer_attrs = {}
S
SunAhong1993 已提交
582
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
add gru  
SunAhong1993 已提交
583 584 585 586
    if inputs_node[0].kind() == "prim::GetAttr":
        layer_attrs["input"] = list(mapper.pytorch_params[inputs_name[0]])
    else:
        layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
587 588 589 590 591 592
    # 获取当前节点输出的list
    current_outputs = outputs_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
add gru  
SunAhong1993 已提交
593
        "prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs)
S
SunAhong1993 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607
    return current_inputs, current_outputs


def prim_unchecked_cast(mapper, graph, node):
    """ 构造确认类型的PaddleLayer。

    TorchScript示例:
        %size.64 : int[] = prim::unchecked_cast(%size.63)
        参数含义:
        %size.64 (-): 输出。
        %size.63 (-): 输入。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
608
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
609 610 611 612 613 614 615 616
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.63
S
SunAhong1993 已提交
617
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
618 619 620 621
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
622
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
623 624 625 626 627 628 629 630 631 632 633
    return current_inputs, current_outputs


def prim_Uninitialized(mapper, graph, node):
    """ 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。

    TorchScript示例:
        %345 : bool = prim::Uninitialized()
        参数含义:
        %345 (bool): 输出,为赋值的bool。
    """
S
SunAhong1993 已提交
634
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
635 636 637 638
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    mapper.attrs[output_name] = None
    graph.add_layer(
S
SunAhong1993 已提交
639
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=None)
S
SunAhong1993 已提交
640
    return [], [output_name]