prim.py 22.2 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import numpy as np
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

    TorchScript示例:
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
S
SunAhong1993 已提交
28
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
29 30 31 32 33 34 35
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
    output_type = output.type()
    if isinstance(value, str):
        value = string(value)
    if str(output_type) == "Tensor":
S
SunAhong1993 已提交
36
        tensor_value = value
S
SunAhong1993 已提交
37
        value = "{}".format(value)
S
SunAhong1993 已提交
38 39
        if "tensor" in value:
            mapper.pytorch_params[output_name] = tensor_value.cpu().detach().numpy()
S
SunAhong1993 已提交
40 41 42 43 44 45 46 47 48 49 50 51

    if "inf" in str(value):
        t = str(type(value)).split("'")[1]
        if str(value).startswith("-"):
            value = "-{}({})".format(t, string(str(value)[1:]))
        else:
            value = "{}({})".format(t, string(str(value)))
    if "9223372036854775807" in str(value):
        import math
        value = int(math.pow(2, 31) - 1)
    mapper.attrs[output_name] = value
    graph.add_layer(
S
SunAhong1993 已提交
52
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=value)
S
SunAhong1993 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66
    return [], [output_name]


def prim_data(mapper, graph, node):
    """ 构造Tensor的PaddleLayer。

    TorchScript示例:
        %4336 : Tensor = prim::data(%out.6)
        参数含义:
        %4336 (Tensor): 输出Tensor。
        %out.6 (Tensor): 原始Tensor。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
67
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
68 69 70 71 72 73 74 75
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4336
S
SunAhong1993 已提交
76
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
77 78 79 80
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
81
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
82 83 84
    return current_inputs, current_outputs


S
SunAhong1993 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def prim_DictConstruct(mapper, graph, node):
    """ 构建dict。
    
    TorchScript示例:
        %32 : Dict(str, Tensor) = prim::DictConstruct(%30, %23, %31, %29)
        参数含义:
        %32 (dict): 组成的字典。
        %30 (str): key。
        %23 (-): value。
        %31 (str): key。
        %29 (-): value。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        if i%2 == 0:
            layer_attrs["key{}".format(int(i/2))] = mapper.attrs[input_name]
        else:
            layer_inputs["value{}".format(int(i/2))] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.dict_construct", 
                    inputs=layer_inputs, 
                    outputs=layer_outputs, 
                    scope_name=scope_name,
                    **layer_attrs)
    return current_inputs, current_outputs



S
SunAhong1993 已提交
123 124 125 126 127 128 129 130 131
def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

    TorchScript示例:
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
S
SunAhong1993 已提交
132
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    current_node = node
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
    attr_name = ".".join(field_name_list)
    output_name = mapper._get_outputs_name(current_node, attr_name)[0]
    part_script = mapper.script
    for field_name in field_name_list:
        if hasattr(part_script, field_name):
            param = getattr(part_script, field_name)
            if isinstance(param, torch.Tensor):
S
SunAhong1993 已提交
149
                param = param.cpu().detach().numpy()
S
SunAhong1993 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
                if len(param.shape) == 0:
                    param = np.reshape(param, 1)
                if str(param.dtype) == "uint8":
                    param = param.astype("int32")
            mapper.pytorch_params[output_name] = param
            part_script = param
    return [], [output_name]


def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

    TorchScript示例:
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
S
SunAhong1993 已提交
176
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
177 178 179 180 181 182
    outputs_name = mapper._get_outputs_name(node)
    node_outputs = outputs_name.copy()
    current_outputs = outputs_name.copy()
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
S
SunAhong1993 已提交
183 184
    mapper._check_input(graph, input_node, input_node_name, current_outputs, scope_name)
    graph.add_layer("prim.if", inputs={'input': input_node_name}, outputs=node_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
    return list(current_layer.inputs.values()), current_outputs


def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

    TorchScript示例:
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
        %86 (list): list节点输出。
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
    """
S
SunAhong1993 已提交
211
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
212 213 214 215 216 217 218 219 220 221 222 223
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
224
    graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
    return current_inputs, current_outputs


def prim_ListUnpack(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %x1.4 : Tensor, %x2.4 : Tensor = prim::ListUnpack(%4354)
        参数含义:
        %x1.4 (Tensor): 输出,list的第一个元素。
        %x2.4 (Tensor): 输出,list的第二个元素。
        %4354 (list): 列表。
    """
S
SunAhong1993 已提交
238
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
239 240 241 242 243 244 245
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name.copy()
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = layer_outputs.copy()
    # 处理输入0,即%4354
S
SunAhong1993 已提交
246
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
247 248 249 250 251
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
252
        "prim.list_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    mapper.split_len[list(layer_inputs.values())[0]] = len(layer_outputs)
    return current_inputs, current_outputs


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

    TorchScript示例:
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
273
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    node_outputs = mapper._get_outputs_name(node)
    loop_inputs = {}
    block = list(node.blocks())[0]
    loop_outputs = node_outputs.copy()
    for i, block_input_ivalue in enumerate(block.inputs()):
        if i == 0:
            block_input_node_name = '_x' + str(mapper.output_index)
        else:
            block_input_node_name = 'x' + str(mapper.output_index)
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
293
                                node_outputs, scope_name)
S
SunAhong1993 已提交
294 295 296 297 298 299 300 301 302
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
303
                                node_outputs, scope_name)
S
SunAhong1993 已提交
304 305 306
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
S
SunAhong1993 已提交
307 308
                outputs=[block_input_node_name],
                scope_name=scope_name)
S
SunAhong1993 已提交
309 310
            node_outputs.append(block_input_node_name)

S
SunAhong1993 已提交
311
    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    current_layer = list(graph.layers.values())[-1]
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

    TorchScript示例:
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
S
SunAhong1993 已提交
331
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
332 333 334 335 336 337 338
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
339
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
340 341 342 343
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
344
    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
345 346 347 348 349 350 351 352 353 354 355 356
    return current_inputs, current_outputs


def prim_NumToTensor(mapper, graph, node):
    """ 构造转为Tensor的PaddleLayer。

    TorchScript示例:
        %other.2 : Tensor = prim::NumToTensor(%1736)
        参数含义:
        %other.2 (Tensor): 输出。
        %1736 (-): 输入。
    """
S
SunAhong1993 已提交
357
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
358 359 360 361 362 363 364 365
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
366 367 368
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    inputs_inputs_name, inputs_inputs_node = mapper._get_inputs_name(inputs_node[0])
    if inputs_node[0].kind() == "aten::size" and len(inputs_inputs_name) > 1:
S
SunAhong1993 已提交
369 370 371 372
        layer_inputs["input"] = inputs_name[0]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
373
            "prim_equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
374
    else:
S
SunAhong1993 已提交
375
        layer_inputs["fill_value"] = inputs_name[0]
S
SunAhong1993 已提交
376 377 378 379 380 381
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        input_type = list(node.inputs())[0].type()
        layer_attrs["dtype"] = input_type
        layer_attrs["shape"] = [1]
        graph.add_layer(
S
SunAhong1993 已提交
382
            "paddle.full",
S
SunAhong1993 已提交
383 384
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
385
            scope_name=scope_name,
S
SunAhong1993 已提交
386 387 388 389 390 391 392 393 394 395 396 397
            **layer_attrs)
    return current_inputs, current_outputs


def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

    TorchScript示例:
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
S
SunAhong1993 已提交
398
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
399 400 401 402 403 404 405
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%76
S
SunAhong1993 已提交
406
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
407 408 409 410 411
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
412
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
413 414 415 416 417 418 419 420 421 422 423 424
    return current_inputs, current_outputs


def prim_requires_grad(mapper, graph, node):
    """ 构造是否计算梯度的PaddleLayer。

    TorchScript示例:
        %356 : bool = prim::requires_grad(%tensor.31)
        参数含义:
        %356 (bool): 输出,当前Tensor是否计算梯度。
        %tensor.31 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
425
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
426 427 428 429 430 431 432
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
433
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
434 435 436 437 438
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
439
        "prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
440 441 442 443 444 445 446 447 448 449 450 451
    return current_inputs, current_outputs


def prim_SetAttr(mapper, graph, node):
    """ 设置attribute信息。

    TorchScript示例:
        = prim::SetAttr[name="num_batches_tracked"](%260, %277)
        参数含义:
        %260 (-): 属性名前缀。
        %277 (-): 需要设置的值。
    """
S
SunAhong1993 已提交
452
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = []
    tmp_node = node
    while True:
        input_node = list(tmp_node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            tmp_node = input_node
        except Exception:
            break
    field_name_list.append(node.s('name'))

    inputs_name, inputs_node = mapper._get_inputs_name(node)
    param = {
        "Tensor": "self." + ".".join(field_name_list).replace(".", "_"),
        "parent_layer_id": graph.parent_layer.id
    }
    mapper.pytorch_params[".".join(field_name_list)] = param
    graph.add_layer(
        "prim.set_attr",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
474 475
        outputs=["self." + ".".join(field_name_list).replace(".", "_")],
        scope_name=scope_name)
S
SunAhong1993 已提交
476 477 478 479 480 481 482 483 484 485 486 487
    return [], [output_name]


def prim_shape(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %4701 : int[] = prim::shape(%result.1)
        参数含义:
        %4701 (list): 输出,shape信息。
        %result.1 (Tensor): 需要获取shape的值。
    """
S
SunAhong1993 已提交
488
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
489 490 491 492 493 494 495
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
496
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
497 498 499 500 501
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
502
        "paddle.shape", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515
    return current_inputs, current_outputs


def prim_TupleConstruct(mapper, graph, node):
    """ 构造tuple的PaddleLayer。

    TorchScript示例:
        %4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
        参数含义:
        %4492 (tuple): 输出,tuple。
        %x.46 (Tensor/其他): tuple第一个元素信息。
        %aux (Tensor/其他): tuple第二个元素信息。
    """
S
SunAhong1993 已提交
516
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
517 518 519 520 521 522 523 524 525 526 527 528
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
529
    graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542
    return current_inputs, current_outputs


def prim_TupleUnpack(mapper, graph, node):
    """ 构造获取tuple元素的PaddleLayer。

    TorchScript示例:
        %x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
        参数含义:
        %x.223 (Tensor/其他): 输出,tuple第一个元素信息。
        %aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
        %4492 (tuple): 需要获取元素的tuple。
    """
S
SunAhong1993 已提交
543
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
544 545 546 547 548 549 550 551 552 553 554
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = outputs_name
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
555
        "prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569
    return current_inputs, current_outputs


def prim_unchecked_cast(mapper, graph, node):
    """ 构造确认类型的PaddleLayer。

    TorchScript示例:
        %size.64 : int[] = prim::unchecked_cast(%size.63)
        参数含义:
        %size.64 (-): 输出。
        %size.63 (-): 输入。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
570
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
571 572 573 574 575 576 577 578
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.63
S
SunAhong1993 已提交
579
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
580 581 582 583
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
584
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
585 586 587 588 589 590 591 592 593 594 595
    return current_inputs, current_outputs


def prim_Uninitialized(mapper, graph, node):
    """ 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。

    TorchScript示例:
        %345 : bool = prim::Uninitialized()
        参数含义:
        %345 (bool): 输出,为赋值的bool。
    """
S
SunAhong1993 已提交
596
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
597 598 599 600
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    mapper.attrs[output_name] = None
    graph.add_layer(
S
SunAhong1993 已提交
601
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=None)
S
SunAhong1993 已提交
602
    return [], [output_name]