prim.py 23.7 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import numpy as np
from x2paddle.core.util import *


def prim_Constant(mapper, graph, node):
    """ 构造constant的PaddleLayer,该节点实现常量赋值。

    TorchScript示例:
        %2 : int = prim::Constant[value=-1]()
        参数含义:
        %2 (常量类型由赋值类型定义,该示例中为int型): 常量赋值结果输出。
    """
S
SunAhong1993 已提交
29
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
30 31 32 33 34 35
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    value = output.toIValue()
    output_type = output.type()
    if isinstance(value, str):
        value = string(value)
S
SunAhong1993 已提交
36
    if "Tensor" in str(output_type):
S
SunAhong1993 已提交
37
        tensor_value = value
S
SunAhong1993 已提交
38
        value = "{}".format(value)
S
SunAhong1993 已提交
39
        if "tensor" in value:
S
SunAhong1993 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
            if isinstance(tensor_value, list) or isinstance(tensor_value, tuple):
                name_dict = dict()
                for i, tv in enumerate(tensor_value):
                    output_name_i = "{}_p{}".format(output_name,i)
                    key_i = "input{}".format(i)
                    mapper.paddle_params[output_name_i] = tv.cpu().detach().numpy()
                    graph.add_layer(
                        "self.create_parameter",
                        inputs={},
                        outputs=[output_name_i],
                        scope_name=scope_name,
                        dtype=string(str(mapper.paddle_params[output_name_i].dtype)),
                        shape = mapper.paddle_params[output_name_i].shape,
                        default_initializer="paddle.nn.initializer.Constant(value=0.0)")
                    name_dict[key_i] = output_name_i
                graph.add_layer(
                    "prim.list",
                    inputs=name_dict,
                    outputs=[output_name],
                    scope_name=scope_name)
                return [], [output_name]
            else:
                mapper.pytorch_params[output_name] = tensor_value.cpu().detach().numpy()
S
SunAhong1993 已提交
63 64 65 66 67 68 69 70 71 72 73 74

    if "inf" in str(value):
        t = str(type(value)).split("'")[1]
        if str(value).startswith("-"):
            value = "-{}({})".format(t, string(str(value)[1:]))
        else:
            value = "{}({})".format(t, string(str(value)))
    if "9223372036854775807" in str(value):
        import math
        value = int(math.pow(2, 31) - 1)
    mapper.attrs[output_name] = value
    graph.add_layer(
S
SunAhong1993 已提交
75
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=value)
S
SunAhong1993 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89
    return [], [output_name]


def prim_data(mapper, graph, node):
    """ 构造Tensor的PaddleLayer。

    TorchScript示例:
        %4336 : Tensor = prim::data(%out.6)
        参数含义:
        %4336 (Tensor): 输出Tensor。
        %out.6 (Tensor): 原始Tensor。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
90
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
91 92 93 94 95 96 97 98
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4336
S
SunAhong1993 已提交
99
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
100 101 102 103
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
104
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
105 106 107
    return current_inputs, current_outputs


S
SunAhong1993 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
def prim_DictConstruct(mapper, graph, node):
    """ 构建dict。
    
    TorchScript示例:
        %32 : Dict(str, Tensor) = prim::DictConstruct(%30, %23, %31, %29)
        参数含义:
        %32 (dict): 组成的字典。
        %30 (str): key。
        %23 (-): value。
        %31 (str): key。
        %29 (-): value。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        if i%2 == 0:
            layer_attrs["key{}".format(int(i/2))] = mapper.attrs[input_name]
        else:
            layer_inputs["value{}".format(int(i/2))] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.dict_construct", 
                    inputs=layer_inputs, 
                    outputs=layer_outputs, 
                    scope_name=scope_name,
                    **layer_attrs)
    return current_inputs, current_outputs



S
SunAhong1993 已提交
146 147 148 149 150 151 152 153 154
def prim_GetAttr(mapper, graph, node):
    """ 获取attribute信息。

    TorchScript示例:
        %27 : Tensor? = prim::GetAttr[name="bias"](%7)
        参数含义:
        %7 (Tensor): 输入Tensor。
        %27 (Tensor): 输入Tensor。
    """
S
SunAhong1993 已提交
155
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    current_node = node
    field_name_list = [node.s('name')]
    while True:
        input_node = list(node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            node = input_node
        except Exception:
            break
    attr_name = ".".join(field_name_list)
    output_name = mapper._get_outputs_name(current_node, attr_name)[0]
    part_script = mapper.script
    for field_name in field_name_list:
        if hasattr(part_script, field_name):
            param = getattr(part_script, field_name)
            if isinstance(param, torch.Tensor):
S
SunAhong1993 已提交
172
                param = param.cpu().detach().numpy()
S
SunAhong1993 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                if len(param.shape) == 0:
                    param = np.reshape(param, 1)
                if str(param.dtype) == "uint8":
                    param = param.astype("int32")
            mapper.pytorch_params[output_name] = param
            part_script = param
    return [], [output_name]


def prim_If(mapper, graph, node):
    """ 构造if控制流的PaddleLayer。

    TorchScript示例:
        %input.5 : Tensor = prim::If(%107)
          block0():
            %109 : Tensor = aten::t(%102)
            %ret.2 : Tensor = aten::addmm(%103, %101, %109, %104, %104)
            -> (%ret.2)
          block1():
            %111 : Tensor = aten::t(%102)
            ...
            -> (%output.4)
        参数含义:
        %107 (bool): if判断条件。
        %input.5 (Tensor): if控制流的输出,与%output.4对应。
    """
S
SunAhong1993 已提交
199
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
200 201 202 203 204 205
    outputs_name = mapper._get_outputs_name(node)
    node_outputs = outputs_name.copy()
    current_outputs = outputs_name.copy()
    input_node = list(node.inputs())[0].node()
    script_input_unique_id = list(node.inputs())[0].unique()
    input_node_name = mapper.outputs_info[script_input_unique_id]
S
SunAhong1993 已提交
206 207
    mapper._check_input(graph, input_node, input_node_name, current_outputs, scope_name)
    graph.add_layer("prim.if", inputs={'input': input_node_name}, outputs=node_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    current_layer = list(graph.layers.values())[-1]
    block0 = list(node.blocks())[0]
    block0_graph, graph_inputs0 = mapper.traverse(block0, current_layer)
    len0 = 0
    for i, input_name in enumerate(graph_inputs0):
        current_layer.inputs['input-{}'.format(i)] = input_name
        len0 = i
    current_layer.add_block(block0_graph)
    block1 = list(node.blocks())[1]
    block1_graph, graph_inputs1 = mapper.traverse(block1, current_layer)
    for i, input_name in enumerate(graph_inputs1):
        current_layer.inputs['input-{}'.format(len0 + 1 + i)] = input_name
    current_layer.add_block(block1_graph)
    return list(current_layer.inputs.values()), current_outputs


def prim_ListConstruct(mapper, graph, node):
    """ 构造list的PaddleLayer。

    TorchScript示例:
        %86 : int[] = prim::ListConstruct(%84, %85)
        参数含义:
        %86 (list): list节点输出。
        %84 (int/其他): list第一个元素信息。
        %85 (int/其他): list第二个元素信息。
    """
S
SunAhong1993 已提交
234
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
235 236 237 238 239 240 241 242
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
S
SunAhong1993 已提交
243
        mapper._check_input(graph, inputs_node[i], input_name, current_outputs, scope_name)
S
SunAhong1993 已提交
244 245 246 247
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
248 249
    layer_id = graph.add_layer("prim.list", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
    mapper.output2id[output_name] = layer_id
S
SunAhong1993 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262
    return current_inputs, current_outputs


def prim_ListUnpack(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %x1.4 : Tensor, %x2.4 : Tensor = prim::ListUnpack(%4354)
        参数含义:
        %x1.4 (Tensor): 输出,list的第一个元素。
        %x2.4 (Tensor): 输出,list的第二个元素。
        %4354 (list): 列表。
    """
S
SunAhong1993 已提交
263
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
264 265 266 267 268 269 270
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name.copy()
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = layer_outputs.copy()
    # 处理输入0,即%4354
S
SunAhong1993 已提交
271
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
272 273 274 275 276
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
277
        "prim.list_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    mapper.split_len[list(layer_inputs.values())[0]] = len(layer_outputs)
    return current_inputs, current_outputs


def prim_Loop(mapper, graph, node):
    """ 构造loop循环的PaddleLayer。

    TorchScript示例:
        %x : Tensor = prim::Loop(%4, %3, %x.3)
        block0(%i : int, %x.12 : Tensor):
          %72 : int[] = prim::Constant[value=[6, 6]]()
          ...
          %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.12, %_output_size.1)
          -> (%3, %x.5)
       参数含义:
       %4 (int): 循环次数。
       %3 (bool): 是否进入退出。
       %x.3 (Tensor): 循环中修改的Tensor。
       %x (Tensor): loop循环的输出,与%x.5对应。
    """
S
SunAhong1993 已提交
298
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    node_outputs = mapper._get_outputs_name(node)
    loop_inputs = {}
    block = list(node.blocks())[0]
    loop_outputs = node_outputs.copy()
    for i, block_input_ivalue in enumerate(block.inputs()):
        if i == 0:
            block_input_node_name = '_x' + str(mapper.output_index)
        else:
            block_input_node_name = 'x' + str(mapper.output_index)
        unique_id = block_input_ivalue.unique()
        if unique_id not in mapper.outputs_info:
            mapper.outputs_info[unique_id] = block_input_node_name
            mapper.output_index += 1
        if i == 0:
            loop_input_node = list(node.inputs())[0].node()
            script_loop_input_unique_id = list(node.inputs())[0].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
318
                                node_outputs, scope_name)
S
SunAhong1993 已提交
319 320 321 322 323 324 325 326 327
            loop_inputs['input'] = loop_input_node_name
            loop_outputs.append(block_input_node_name)
            node_outputs.append(block_input_node_name)
        else:
            loop_input_node = list(node.inputs())[i + 1].node()
            script_loop_input_unique_id = list(node.inputs())[i + 1].unique()
            loop_input_node_name = mapper.outputs_info[
                script_loop_input_unique_id]
            mapper._check_input(graph, loop_input_node, loop_input_node_name,
S
SunAhong1993 已提交
328
                                node_outputs, scope_name)
S
SunAhong1993 已提交
329 330 331
            graph.add_layer(
                "prim.equal",
                inputs={'input': loop_input_node_name},
S
SunAhong1993 已提交
332 333
                outputs=[block_input_node_name],
                scope_name=scope_name)
S
SunAhong1993 已提交
334 335
            node_outputs.append(block_input_node_name)

S
SunAhong1993 已提交
336
    graph.add_layer("prim.loop", inputs=loop_inputs, outputs=loop_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    current_layer = list(graph.layers.values())[-1]
    block_graph, graph_inputs = mapper.traverse(block, current_layer)
    for i, input_name in enumerate(graph_inputs):
        if input_name == loop_outputs[1]:
            continue
        current_layer.inputs['input-{}'.format(i)] = input_name
    current_layer.add_block(block_graph)
    return list(current_layer.inputs.values()), node_outputs


def prim_min(mapper, graph, node):
    """ 构造min的PaddleLayer。

    TorchScript示例:
        %87 : int = prim::min(%86)
        参数含义:
        %86 (list): 输入。
        %87 (int): 输出。
    """
S
SunAhong1993 已提交
356
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
357 358 359 360 361 362 363
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
364
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
365 366 367 368
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
369
    graph.add_layer("prim.min", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
370 371 372 373 374 375 376 377 378 379 380 381
    return current_inputs, current_outputs


def prim_NumToTensor(mapper, graph, node):
    """ 构造转为Tensor的PaddleLayer。

    TorchScript示例:
        %other.2 : Tensor = prim::NumToTensor(%1736)
        参数含义:
        %other.2 (Tensor): 输出。
        %1736 (-): 输入。
    """
S
SunAhong1993 已提交
382
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
383 384 385 386 387 388 389 390
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
391 392 393
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    inputs_inputs_name, inputs_inputs_node = mapper._get_inputs_name(inputs_node[0])
    if inputs_node[0].kind() == "aten::size" and len(inputs_inputs_name) > 1:
S
SunAhong1993 已提交
394 395 396 397
        layer_inputs["input"] = inputs_name[0]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
398
            "prim_equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
399
    else:
S
SunAhong1993 已提交
400
        layer_inputs["fill_value"] = inputs_name[0]
S
SunAhong1993 已提交
401 402 403 404 405 406
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        input_type = list(node.inputs())[0].type()
        layer_attrs["dtype"] = input_type
        layer_attrs["shape"] = [1]
        graph.add_layer(
S
SunAhong1993 已提交
407
            "paddle.full",
S
SunAhong1993 已提交
408 409
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
410
            scope_name=scope_name,
S
SunAhong1993 已提交
411 412 413 414 415 416 417 418 419 420 421 422
            **layer_attrs)
    return current_inputs, current_outputs


def prim_RaiseException(mapper, graph, node):
    """ 构造抛出异常的PaddleLayer。

    TorchScript示例:
        = prim::RaiseException(%76)
        参数含义:
        %76 (str): 异常信息。
    """
S
SunAhong1993 已提交
423
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
424 425 426 427 428 429 430
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%76
S
SunAhong1993 已提交
431
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
432 433 434 435 436
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
437
        "prim.exception", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
438 439 440 441 442 443 444 445 446 447 448 449
    return current_inputs, current_outputs


def prim_requires_grad(mapper, graph, node):
    """ 构造是否计算梯度的PaddleLayer。

    TorchScript示例:
        %356 : bool = prim::requires_grad(%tensor.31)
        参数含义:
        %356 (bool): 输出,当前Tensor是否计算梯度。
        %tensor.31 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
450
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
451 452 453 454 455 456 457
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%86
S
SunAhong1993 已提交
458
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
459 460 461 462 463
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
464
        "prim.requires_grad", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
465 466 467 468 469 470 471 472 473 474 475 476
    return current_inputs, current_outputs


def prim_SetAttr(mapper, graph, node):
    """ 设置attribute信息。

    TorchScript示例:
        = prim::SetAttr[name="num_batches_tracked"](%260, %277)
        参数含义:
        %260 (-): 属性名前缀。
        %277 (-): 需要设置的值。
    """
S
SunAhong1993 已提交
477
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    output_name = mapper._get_outputs_name(node)[0]
    field_name_list = []
    tmp_node = node
    while True:
        input_node = list(tmp_node.inputs())[0].node()
        try:
            field_name_list.insert(0, input_node.s('name'))
            tmp_node = input_node
        except Exception:
            break
    field_name_list.append(node.s('name'))

    inputs_name, inputs_node = mapper._get_inputs_name(node)
    param = {
        "Tensor": "self." + ".".join(field_name_list).replace(".", "_"),
        "parent_layer_id": graph.parent_layer.id
    }
    mapper.pytorch_params[".".join(field_name_list)] = param
    graph.add_layer(
        "prim.set_attr",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
499 500
        outputs=["self." + ".".join(field_name_list).replace(".", "_")],
        scope_name=scope_name)
S
SunAhong1993 已提交
501 502 503 504 505 506 507 508 509 510 511 512
    return [], [output_name]


def prim_shape(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %4701 : int[] = prim::shape(%result.1)
        参数含义:
        %4701 (list): 输出,shape信息。
        %result.1 (Tensor): 需要获取shape的值。
    """
S
SunAhong1993 已提交
513
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
514 515 516 517 518 519 520
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
521
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
522 523 524 525 526
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
527
        "paddle.shape", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540
    return current_inputs, current_outputs


def prim_TupleConstruct(mapper, graph, node):
    """ 构造tuple的PaddleLayer。

    TorchScript示例:
        %4492 : (Tensor, Tensor?) = prim::TupleConstruct(%x.46, %aux)
        参数含义:
        %4492 (tuple): 输出,tuple。
        %x.46 (Tensor/其他): tuple第一个元素信息。
        %aux (Tensor/其他): tuple第二个元素信息。
    """
S
SunAhong1993 已提交
541
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
542 543 544 545 546 547 548 549 550 551 552 553
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理每个输入
    for i, input_name in enumerate(inputs_name):
        layer_inputs["input{}".format(i)] = input_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
554
    graph.add_layer("prim.tuple", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567
    return current_inputs, current_outputs


def prim_TupleUnpack(mapper, graph, node):
    """ 构造获取tuple元素的PaddleLayer。

    TorchScript示例:
        %x.223 : Tensor, %aux.3 : Tensor? = prim::TupleUnpack(%4492)
        参数含义:
        %x.223 (Tensor/其他): 输出,tuple第一个元素信息。
        %aux.3 (Tensor/其他): 输出,tuple第二个元素信息。
        %4492 (tuple): 需要获取元素的tuple。
    """
S
SunAhong1993 已提交
568
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
569 570 571
    outputs_name = mapper._get_outputs_name(node)
    layer_outputs = outputs_name
    layer_inputs = {}
S
add gru  
SunAhong1993 已提交
572
    layer_attrs = {}
S
SunAhong1993 已提交
573
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
add gru  
SunAhong1993 已提交
574 575 576 577
    if inputs_node[0].kind() == "prim::GetAttr":
        layer_attrs["input"] = list(mapper.pytorch_params[inputs_name[0]])
    else:
        layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
578 579 580 581 582 583
    # 获取当前节点输出的list
    current_outputs = outputs_name
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
add gru  
SunAhong1993 已提交
584
        "prim.tuple_unpack", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs)
S
SunAhong1993 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598
    return current_inputs, current_outputs


def prim_unchecked_cast(mapper, graph, node):
    """ 构造确认类型的PaddleLayer。

    TorchScript示例:
        %size.64 : int[] = prim::unchecked_cast(%size.63)
        参数含义:
        %size.64 (-): 输出。
        %size.63 (-): 输入。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
599
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
600 601 602 603 604 605 606 607
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.63
S
SunAhong1993 已提交
608
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
S
SunAhong1993 已提交
609 610 611 612
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
613
    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
614 615 616 617 618 619 620 621 622 623 624
    return current_inputs, current_outputs


def prim_Uninitialized(mapper, graph, node):
    """ 构造表示编译器永远不会使用的值的PaddleLayer,该节点转换为None。

    TorchScript示例:
        %345 : bool = prim::Uninitialized()
        参数含义:
        %345 (bool): 输出,为赋值的bool。
    """
S
SunAhong1993 已提交
625
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
626 627 628 629
    output_name = mapper._get_outputs_name(node)[0]
    output = list(node.outputs())[0]
    mapper.attrs[output_name] = None
    graph.add_layer(
S
SunAhong1993 已提交
630
        "prim.constant", inputs={}, outputs=[output_name], scope_name=scope_name, value=None)
S
SunAhong1993 已提交
631
    return [], [output_name]