opset.py 71.4 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16
from x2paddle.core.graph import GraphNode
C
channingss 已提交
17
from x2paddle.core.util import string
C
Channingss 已提交
18
from functools import reduce
C
update  
channingss 已提交
19
import numpy as np
C
channingss 已提交
20
import onnx
C
channingss 已提交
21
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
22
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
23
import logging as _logging
24
from collections import OrderedDict
C
channingss 已提交
25
import math
C
channingss 已提交
26
import os
S
SunAhong1993 已提交
27 28
import copy
import sys
C
channingss 已提交
29
import shutil
30

C
update  
channingss 已提交
31 32 33
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
34
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
35
    if 'Constant' in node.layer_type:
C
channingss 已提交
36
        return node.value
C
update  
channingss 已提交
37 38
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
39 40 41
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
42 43 44
    return None


C
Channingss 已提交
45 46 47 48 49 50
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
51
        if dim < -1:
C
Channingss 已提交
52 53 54 55 56 57 58
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True

59

C
Channingss 已提交
60
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
61 62 63 64 65 66 67
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
85
class OpSet9():
86
    elementwise_ops = {
S
SunAhong1993 已提交
87 88
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
fix  
SunAhong1993 已提交
89
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
90 91
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
R
root 已提交
92
    }
93

S
SunAhong1993 已提交
94 95 96 97 98
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
        'ReduceMean': ['paddle.mean',
                       dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
99
                       dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
100 101
        'ReduceSum': ['paddle.sum', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
102
                      dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
103 104
        'ReduceMin': ['paddle.min', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
105
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
106 107
        'ReduceMax': ['paddle.max', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
108
                      dict(axes=None, keepdim=1)],
S
for pad  
SunAhong1993 已提交
109 110
        'ReduceProd': ['paddle.prod', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
111
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        # active function
        'Relu': ['paddle.nn.functional.relu'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                      dict(alpha='negative_slope'), 
                      dict(negative_slope=.01)],
        'Elu': ['paddle.nn.functional.elu', 
                dict(alpha='alpha'), 
                dict(alpha=1.)],
        'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', 
                            dict(alpha='threshold'),
                            dict(alpha=1.)],
        'Tanh': ['paddle.nn.functional.tanh'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softsign': ['paddle.nn.functional.softsign'],
        'Softplus': ['paddle.nn.functional.softplus', 
                     dict(threshold='threshold'), 
                     dict(threshold=float(sys.maxsize))],
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
130
        'Log': ['paddle.log'],
S
SunAhong1993 已提交
131 132 133 134 135 136 137
        'Softmax': ['paddle.nn.functional.softmax', 
                    dict(axis='axis'), 
                    dict(axis=1)],
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
138 139
    }

S
SunAhong1993 已提交
140
    def __init__(self, decoder, paddle_graph):
C
Channingss 已提交
141
        super(OpSet9, self).__init__()
142
        self.graph = decoder.graph
S
SunAhong1993 已提交
143 144 145 146
        self.paddle_graph = paddle_graph
        self.input_index = 0
        self.inputs_info = dict()
        self.params = dict()
R
root 已提交
147

148
    @print_mapping_info
S
SunAhong1993 已提交
149
    def directly_map(self, node, *args, **kwargs):
C
update  
channingss 已提交
150
        inputs = node.layer.input
S
SunAhong1993 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
        self.paddle_graph.add_layer(
            kernel=paddle_op,
            inputs={"x": input.name},
            outputs=[node.name],
            **layer_attrs)
            
174
    @print_mapping_info
175 176 177 178
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
179 180 181 182 183 184 185
        inputs_dict = {'x': val_x.name, 
                       'y': val_y.name}
        self.paddle_graph.add_layer(
            op_type, 
            inputs=inputs_dict, 
            outputs=[node.name])
        
186
    @print_mapping_info
C
update  
channingss 已提交
187
    def place_holder(self, node):
C
channings 已提交
188 189
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
190 191 192
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
193
                assert 'shape of input is not assigned'
S
SunAhong1993 已提交
194 195 196 197 198 199 200 201 202
        self.paddle_graph.add_layer(
            kernel="paddle.static.data",
            inputs={},
            outputs=[node.name],
            dtype=string(node.dtype),
            shape=shape,
            name=string(node.name))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1
C
update  
channingss 已提交
203

204
    @print_mapping_info
C
update  
channingss 已提交
205 206 207 208
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
209
        shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
210
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
211 212 213 214 215 216 217
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
218
        else:
S
SunAhong1993 已提交
219 220 221 222 223 224 225 226 227
            self.params[node.name] = node.weight
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
242
    def _interpolate(self, node):
C
channingss 已提交
243
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
244
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
245
        attrs = dict()
246
        if node.layer_type == 'Resize':
C
Channingss 已提交
247 248 249
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
250 251 252 253
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
254 255 256
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
S
fix  
SunAhong1993 已提交
257 258 259 260
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
261 262 263
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
S
SunAhong1993 已提交
264 265 266 267 268 269 270 271 272 273 274 275
                var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_sizes.name},
                    outputs=[var_nc, var_hw],
                    num_or_sections=[2, 2],
                    axis=0)
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": var_hw},
                    outputs=[var_hw],
                    dtype=string('int32'))
S
SunAhong1993 已提交
276 277 278
                inputs['size'] = var_hw
                attrs = {"align_corners": False,
                         "mode": string(node.get_attr('mode', 'nearest'))}
S
SunAhong1993 已提交
279
                self.paddle_graph.add_layer(
S
docs  
SunAhong1993 已提交
280
                    kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
281 282 283 284
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
285 286
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
287 288 289 290 291 292 293 294
            self.paddle_graph.add_layer(
                "paddle.slice",
                inputs={"input": val_scales.name},
                outputs=[val_scales.name],
                axes=[0],
                starts=[2],
                ends=[4])
            inputs['scale_factor'] = val_scales.name
R
root 已提交
295

C
channingss 已提交
296
        mode = node.get_attr('mode', 'nearest')
S
fix  
SunAhong1993 已提交
297
        attrs.update({"align_corners": False,
S
SunAhong1993 已提交
298
                 "mode": string(mode),
S
fix  
SunAhong1993 已提交
299
                 "align_mode": 1})
S
SunAhong1993 已提交
300 301 302
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
S
fix  
SunAhong1993 已提交
303
            attrs["align_corners"] = True
S
SunAhong1993 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
        
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
            min=0.0,
            max=1.0)  
        
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('int64'))   
R
root 已提交
340

341
    @print_mapping_info
C
channings 已提交
342 343 344
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
345 346 347

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
348 349
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
S
SunAhong1993 已提交
350
        layer_attrs = {
R
root 已提交
351 352 353 354 355
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
S
SunAhong1993 已提交
356
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
357
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
358 359 360 361
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
362 363

    @print_mapping_info
C
channings 已提交
364 365 366
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
367

C
channings 已提交
368 369
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
S
SunAhong1993 已提交
370
        layer_attrs = {
R
root 已提交
371 372 373 374
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
S
SunAhong1993 已提交
375
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
376
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
377 378 379 380
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
381 382

    @print_mapping_info
C
update  
channingss 已提交
383
    def Pad(self, node, op_independent=True):
C
channingss 已提交
384
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
385
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
386 387 388 389 390 391 392 393
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
C
update  
channingss 已提交
394 395
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
396 397
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
for pad  
SunAhong1993 已提交
398
        assume_pad = False
S
SunAhong1993 已提交
399 400
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
for pad  
SunAhong1993 已提交
401 402 403
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
C
update  
channingss 已提交
404
        else:
S
for pad  
SunAhong1993 已提交
405 406
            output_name = node.name
        layer_outputs = [output_name]
S
SunAhong1993 已提交
407 408
        if is_pads_attr:
            paddings = []
S
for pad  
SunAhong1993 已提交
409
            paddle_op = 'paddle.nn.functional.pad'
S
SunAhong1993 已提交
410 411
            if len(pads) == 10 and sum(pads) == 0:
                pads = pads[0: 6]
S
for pad  
SunAhong1993 已提交
412
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
413
                if data_shape:
S
for pad  
SunAhong1993 已提交
414
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW
S
SunAhong1993 已提交
415
                if output_shape:
S
for pad  
SunAhong1993 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads)  # NCHW
                if assume_pad:
                    if len(pads) == 2:
                        data_format = "NCL"
                    elif len(pads) == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    layer_attrs['pad'] = paddings
S
SunAhong1993 已提交
429
                    layer_attrs['data_format'] = string(data_format)
S
for pad  
SunAhong1993 已提交
430 431 432 433 434 435 436 437 438 439 440
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                    if assume_pad:
                        paddings = np.array(pads).reshape(
                            (2, -1)).transpose().astype("int32").flatten().tolist()
                        layer_attrs['pad'] = paddings
                    else:
                        raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
441
            elif len(pads) == 8:
S
for pad  
SunAhong1993 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                if assume_pad:
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['pad'] = paddings
                    else:
                        layer_attrs['pad'] = paddings
                        paddle_op = "custom_layer:pad_all_dim4_one_input"
S
SunAhong1993 已提交
456
            else:
S
for pad  
SunAhong1993 已提交
457
                 raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
458 459 460
            self.paddle_graph.add_layer(
                paddle_op, 
                inputs={'x': val_x.name}, 
S
for pad  
SunAhong1993 已提交
461
                outputs=layer_outputs, 
S
SunAhong1993 已提交
462
                **layer_attrs)
S
for pad  
SunAhong1993 已提交
463
            if not op_independent:
S
SunAhong1993 已提交
464
                return node.name + '_paded'
C
update  
channingss 已提交
465
        else:
S
for pad  
SunAhong1993 已提交
466 467
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
468
                if data_shape:
S
for pad  
SunAhong1993 已提交
469
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW
S
SunAhong1993 已提交
470
                if output_shape:
S
for pad  
SunAhong1993 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len  # NCHW 
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_with_two_input", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
                                "custom_layer:pad_all_dim2", 
                                inputs={'x': val_x.name, 'pad': val_pad.name}, 
                                outputs=layer_outputs, 
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                if assume_pad:
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_all_dim4", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs, 
                        value=value,
                        mode=string(mode))
            else:
                print(pads_len)
                raise Exception("The padding value is wrong!")   
S
SunAhong1993 已提交
516 517
            if not op_independent:
                return node.name + '_paded'
C
update  
channingss 已提交
518

519
    @print_mapping_info
C
update  
channingss 已提交
520
    def Unsqueeze(self, node):
C
channingss 已提交
521
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
522
        axes = node.get_attr('axes')
S
SunAhong1993 已提交
523
        layer_attrs = {'axis': axes}
R
root 已提交
524
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
525 526 527 528 529 530
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
531
        else:
S
SunAhong1993 已提交
532 533 534 535 536
            self.paddle_graph.add_layer(
                'paddle.unsqueeze', 
                inputs={"x": val_x.name}, 
                outputs=[node.name],
                **layer_attrs)
537

538
    @print_mapping_info
C
channingss 已提交
539
    def Shrink(self, node):
C
channingss 已提交
540
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
541 542 543
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
S
SunAhong1993 已提交
544 545 546 547 548
        self.paddle_graph.add_layer(
            'paddle.nn.functional.hardshrink', 
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
            threshold=lambd)
C
channingss 已提交
549

550
    @print_mapping_info
C
update  
channingss 已提交
551 552 553 554 555 556 557 558
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
559

C
update  
channingss 已提交
560
        shape = node.get_attr('shape', None)
R
root 已提交
561

C
update  
channingss 已提交
562
        if shape is None:
C
channingss 已提交
563
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
564 565
        if shape is None:
            shape = list(value.shape)
566 567 568
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
569
                            val_output.name, val_output.name)
570
        if len(value) == 1:
C
channingss 已提交
571
            value = value.tolist()
C
update  
channingss 已提交
572
            value = value[0]
S
SunAhong1993 已提交
573 574 575 576 577 578 579
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
C
channingss 已提交
580 581
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
582 583 584 585 586 587 588 589 590
            self.params[node.name] = value
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
591

592
    @print_mapping_info
C
update  
channingss 已提交
593
    def Resize(self, node):
594 595
        self._interpolate(node)

596
    @print_mapping_info
597 598 599
    def Upsample(self, node):
        self._interpolate(node)

600 601 602 603 604 605
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
S
SunAhong1993 已提交
606
        layer_attrs = {
S
fix  
SunAhong1993 已提交
607
            'eps': epsilon,
608
        }
S
SunAhong1993 已提交
609 610
        dim = len(val_x.out_shapes[0])
        if dim ==2 :
S
fix  
SunAhong1993 已提交
611
            layer_attrs["data_format"] = string("NC")
S
SunAhong1993 已提交
612
        elif dim == 3:
S
fix  
SunAhong1993 已提交
613
            layer_attrs["data_format"] = string("NCL")
S
SunAhong1993 已提交
614
        elif dim == 4:
S
fix  
SunAhong1993 已提交
615
            layer_attrs["data_format"] = string("NCHW")
S
SunAhong1993 已提交
616
        elif dim == 5:
S
fix  
SunAhong1993 已提交
617
            layer_attrs["data_format"] = string("NCDHW")
S
SunAhong1993 已提交
618 619 620
        else:
            raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.")
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
621
            "paddle.nn.functional.instance_norm", 
S
SunAhong1993 已提交
622 623 624
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name}, 
S
fix  
SunAhong1993 已提交
625
            outputs=[node.name], 
S
SunAhong1993 已提交
626
            **layer_attrs)
627 628

    @print_mapping_info
629
    def Expand(self, node):
C
channingss 已提交
630
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
631
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
632
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
633
        name_ones = node.name + '_ones'
C
Channingss 已提交
634
        attr_ones = {
S
SunAhong1993 已提交
635
            'shape': val_shape.name,
C
Channingss 已提交
636
            'dtype': string(val_x_dtype),
S
SunAhong1993 已提交
637
            'fill_value': 1
C
Channingss 已提交
638
        }
S
SunAhong1993 已提交
639 640 641 642 643 644 645 646 647 648 649
        self.paddle_graph.add_layer(
            'paddle.full',
            inputs={},
            outputs=[name_ones],
            **attr_ones)
        inputs_dict = {'x': name_ones, 
                       'y': val_x.name}
        self.paddle_graph.add_layer(
            'paddle.multiply',
            inputs=inputs_dict,
            outputs=[node.name])
C
update  
channingss 已提交
650

651
    @print_mapping_info
C
channingss 已提交
652 653 654 655
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
656
        axis = node.get_attr('axis', 0)
657 658
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
659
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
660
            if len(val_x.out_shapes[0]) <= 1:
S
SunAhong1993 已提交
661 662 663 664 665
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
C
Channingss 已提交
666 667
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
668 669 670 671 672 673 674 675 676 677 678
                    gather_ = node.name + '_1'
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
                        outputs=[node.name],
                        axis=[0])
C
Channingss 已提交
679
                else:
S
SunAhong1993 已提交
680 681 682 683 684
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
C
channingss 已提交
685 686
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
687
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
688 689 690 691 692 693 694 695 696 697 698
            name_trans = val_x.name + '_trans'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
699 700 701
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
702 703 704 705
            self.paddle_graph.add_layer(
                'paddle.transpose', 
                inputs={"x": node.name}, 
                outputs=[node.name], 
S
SunAhong1993 已提交
706
                perm=new_perm)
C
Channingss 已提交
707
            if len(indices_shape) < 1:
S
SunAhong1993 已提交
708 709 710 711 712
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
                    inputs={'x': node.name},
                    outputs=[node.name],
                    axis=[axis])
713 714 715
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
716 717 718 719
                indices_cast = indices.name + '_cast'
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
720
                    outputs=[indices_cast],
S
SunAhong1993 已提交
721 722
                    dtype=string('int64'))
                self.paddle_graph.add_layer(
S
for pad  
SunAhong1993 已提交
723 724 725 726
                    'paddle.nn.functional.embedding',
                    inputs={"x": indices_cast,
                            "weight": val_x.name},
                    outputs=[node.name])
727 728 729
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
730 731 732 733 734 735
                indices_reshape = indices.name + '_shape'
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": indices.name},
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])
736 737

                perm = list(range(len(val_x.out_shapes[0])))
S
SunAhong1993 已提交
738 739 740
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
741
                            'index': indices_reshape},
S
SunAhong1993 已提交
742
                    outputs=[node.name])
743 744 745 746 747 748
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
S
SunAhong1993 已提交
749 750 751 752 753
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=reshaped_shape)
754
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
755
            from functools import reduce
R
root 已提交
756
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
757 758 759 760 761 762
            indices_reshape = indices.name + '_shape'
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices_reshape],
                shape=[reshape_shape, ])
R
root 已提交
763

C
Channingss 已提交
764 765
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
766 767 768 769 770 771 772 773 774
            name_trans = val_x.name + '_transpose'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
775
                        'index': indices_reshape},
S
SunAhong1993 已提交
776 777
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
778 779 780
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
781 782 783 784
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[input_transpose],
S
SunAhong1993 已提交
785 786
                perm=new_perm)
            perm = new_perm
C
Channingss 已提交
787 788 789 790 791 792
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
S
SunAhong1993 已提交
793 794 795 796 797
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
                outputs=[node.name],
                shape=reshaped_shape)
798

C
Channingss 已提交
799 800 801 802 803 804
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
S
SunAhong1993 已提交
805 806 807 808 809 810
            self.paddle_graph.add_layer(
                'paddle.scatter',
                inputs={'x': val_x.name,
                        'index': indices.name,
                        'updates': updates.name},
                outputs=[node.name])
C
Channingss 已提交
811
        else:
S
SunAhong1993 已提交
812
            input_inner_indices = node.name + '_input_inner_indices'
813
            shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices.name],
                shape=indices.out_shapes[0])

            zeros_like_val_x = val_x.name + '_zeros'
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
                inputs={"x": val_x.name},
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
827
                inputs={
S
SunAhong1993 已提交
828 829 830
                    'x': zeros_like_val_x,
                    'index': indices.name,
                    'updates': updates.name
C
Channingss 已提交
831
                },
S
SunAhong1993 已提交
832 833 834
                outputs=[input_inner_indices])
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
835
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
836 837 838 839 840 841 842 843
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": updates.name},
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
844
                inputs={
S
SunAhong1993 已提交
845 846
                    'x': zeros_like_val_x,
                    'index': indices.name,
C
Channingss 已提交
847 848
                    'updates': constant_minus_one
                },
S
SunAhong1993 已提交
849 850
                outputs=[indices_mask])
            constant_one = node.name + '_constant_1'
851
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
852 853 854 855 856 857 858 859 860
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": val_x.name},
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
            input_out_indices_mask = node.name + '_input_out_indices_mask'
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
861
                inputs={"x": indices_mask,
862
                        "y": constant_one},
S
SunAhong1993 已提交
863
                outputs=[input_out_indices_mask])
C
Channingss 已提交
864

S
SunAhong1993 已提交
865 866 867 868
            input_out_indices = node.name + '_input_out_indices'
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={"x": val_x.name,
C
Channingss 已提交
869
                        "y": input_out_indices_mask},
S
SunAhong1993 已提交
870
                outputs=[input_out_indices])
C
Channingss 已提交
871

S
SunAhong1993 已提交
872 873
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
874 875
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
876
                outputs=[node.name])
C
Channingss 已提交
877

878 879 880 881 882 883
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
S
SunAhong1993 已提交
884 885 886 887 888
        inputs = {'start': val_start.name, 
                  'end': val_limit.name, 
                  'step': val_delta.name}
        self.paddle_graph.add_layer(
            'paddle.arange',
889
            inputs=inputs,
S
SunAhong1993 已提交
890 891
            outputs=[node.name],
            dtype=string(dtype))
892 893

    @print_mapping_info
C
channingss 已提交
894
    def Slice(self, node):
C
channingss 已提交
895
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
896
        starts, ends, axes, steps = None, None, None, None
S
SunAhong1993 已提交
897
        layer_attrs = {}
C
channingss 已提交
898 899 900
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
C
Channingss 已提交
901
            starts_value = _const_weight_or_none(starts)
S
for pad  
SunAhong1993 已提交
902 903
            if starts_value is not None:
                starts_value = starts_value.tolist()
C
Channingss 已提交
904
            ends_value = _const_weight_or_none(ends)
S
for pad  
SunAhong1993 已提交
905 906 907 908 909
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
R
root 已提交
910
            if len(node.inputs) > 3:
S
for pad  
SunAhong1993 已提交
911 912
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
R
root 已提交
913
            if len(node.inputs) > 4:
C
channings 已提交
914
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
for pad  
SunAhong1993 已提交
915 916
                steps = _const_weight_or_none(steps).tolist()
            
S
SunAhong1993 已提交
917
            layer_attrs = {
918
                "axes": axes,
S
SunAhong1993 已提交
919 920
                "starts": starts.name,
                "ends": ends.name
921
            }
S
SunAhong1993 已提交
922
            if starts_value is not None and ends_value is not None and axes is not None:
C
Channingss 已提交
923
                starts_value = starts_value.copy()
924
                ends_value = ends_value.copy()
925 926 927 928
                #for idx in range(len(ends_value)):
                #    if ends_value[idx] > 2**31 - 1:
                #        ends_value[idx] = 2**31 - 1
                #print(val_x.out_shapes)
929
                for idx in range(len(ends_value)):
S
SunAhong1993 已提交
930
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]] and val_x.out_shapes[0][axes[idx]] > 0:
931
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
C
Channingss 已提交
932
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
S
SunAhong1993 已提交
933 934
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
S
SunAhong1993 已提交
935
                layer_attrs = {
936 937 938 939 940 941
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
942 943 944 945 946 947 948
                    starts_cast = starts.name + '_cast'
                    self.paddle_graph.add_layer(
                        'paddle.cast',
                        inputs={"x": starts.name},
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
949
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
950
                    ends_cast = ends.name + '_cast'
S
for pad  
SunAhong1993 已提交
951 952
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
953 954 955 956 957 958
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": ends.name},
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
C
channingss 已提交
959 960 961 962
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
963 964 965
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
S
SunAhong1993 已提交
966
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
967

S
for pad  
SunAhong1993 已提交
968

C
Channingss 已提交
969
        if steps is not None:
S
SunAhong1993 已提交
970 971 972 973 974 975
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
                'paddle.strided_slice', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
976
        else:
S
SunAhong1993 已提交
977 978 979 980 981
            self.paddle_graph.add_layer(
                'paddle.slice', 
                inputs={"input": val_x.name}, 
                outputs=[node.name],  
                **layer_attrs)
C
channingss 已提交
982

983
    @print_mapping_info
C
update  
channingss 已提交
984
    def ConstantOfShape(self, node):
C
channingss 已提交
985
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
986
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
987 988 989 990

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
991 992
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
993 994
        if len(value) == 1:
            value = value[0]
S
SunAhong1993 已提交
995
            layer_attrs = {
996
                'dtype': string(dtype),
S
SunAhong1993 已提交
997
                'fill_value': value
998
            }
S
SunAhong1993 已提交
999 1000
            self.paddle_graph.add_layer(
                "paddle.full", 
S
SunAhong1993 已提交
1001
                inputs={'shape': val_shape.name}, 
S
SunAhong1993 已提交
1002 1003
                outputs=[node.name],
                **layer_attrs)
C
update  
channingss 已提交
1004

C
Channingss 已提交
1005 1006 1007 1008 1009 1010 1011 1012
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
S
SunAhong1993 已提交
1013
            layer_attrs = {
C
Channingss 已提交
1014 1015 1016
                'max': max_value,
                'min': min_value,
            }
S
SunAhong1993 已提交
1017 1018 1019 1020 1021
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1022
        else:
S
fix  
SunAhong1993 已提交
1023 1024
            min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
S
SunAhong1993 已提交
1025
            min_value = _const_weight_or_none(min_ipt)
S
fix  
SunAhong1993 已提交
1026
            max_value = _const_weight_or_none(max_ipt)
1027
            if max_value.shape == (1, ):
C
Channingss 已提交
1028
                max_value = max_value[0]
1029
            if min_value.shape == (1, ):
C
Channingss 已提交
1030 1031
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
S
SunAhong1993 已提交
1032 1033 1034 1035 1036 1037
            layer_attrs = {'max': max_value, 'min': min_value}
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1038 1039 1040
        else:
            raise

1041
    @print_mapping_info
C
update  
channingss 已提交
1042
    def Split(self, node):
C
channingss 已提交
1043
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1044
        paddle_op = 'split'
C
channingss 已提交
1045
        split = node.get_attr('split')
C
update  
channingss 已提交
1046
        axis = node.get_attr('axis', 0)
S
SunAhong1993 已提交
1047
        layer_attrs = {
C
channingss 已提交
1048
            'num_or_sections': split,
S
SunAhong1993 已提交
1049
            'axis': axis,
C
channingss 已提交
1050
        }
S
SunAhong1993 已提交
1051 1052
        outputs_list = list()
        if isinstance(split, list) or isinstance(split, tuple):
S
SunAhong1993 已提交
1053 1054 1055 1056 1057
            if len(split) == 1:
                outputs_list.append(node.name)
            else:
                for i in range(len(split)):
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
1058 1059 1060 1061 1062 1063 1064
        else:
            outputs_list.append(node.name)
        self.paddle_graph.add_layer(
            'paddle.split', 
            inputs={"x": val_x.name}, 
            outputs=outputs_list, 
            **layer_attrs)
C
update  
channingss 已提交
1065

1066
    @print_mapping_info
C
update  
channingss 已提交
1067
    def Reshape(self, node):
C
channingss 已提交
1068 1069
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1070
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
1071 1072 1073 1074
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
S
SunAhong1993 已提交
1075 1076 1077 1078 1079
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=shape_value.tolist())
C
Channingss 已提交
1080 1081
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
S
SunAhong1993 已提交
1082 1083 1084 1085 1086
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
1087
        else:
1088 1089
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
S
SunAhong1993 已提交
1090 1091 1092 1093 1094
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    shape=val_shape.out_shapes[0])
S
for pad  
SunAhong1993 已提交
1095 1096 1097 1098 1099 1100
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1101 1102 1103 1104
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1105
                outputs=[node.name])
1106 1107

    @print_mapping_info
C
update  
channingss 已提交
1108
    def Cast(self, node):
C
channingss 已提交
1109
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1110 1111 1112 1113 1114 1115 1116 1117 1118
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
S
SunAhong1993 已提交
1119 1120 1121 1122 1123
        self.paddle_graph.add_layer(
            'paddle.cast', 
            inputs={'x': val_input.name}, 
            outputs=[node.name], 
            dtype=string(dtype))
C
update  
channingss 已提交
1124

C
Channingss 已提交
1125 1126 1127
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1128 1129 1130
        self.paddle_graph.add_layer('paddle.logical_not', 
                                    inputs={'x': val_input.name}, 
                                    outputs=[node.name])
C
Channingss 已提交
1131

1132
    @print_mapping_info
C
update  
channingss 已提交
1133
    def AveragePool(self, node):
C
channingss 已提交
1134
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1135 1136

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1137 1138 1139 1140 1141 1142
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
C
channingss 已提交
1143

C
channingss 已提交
1144 1145
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1146
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1147
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1148 1149 1150 1151 1152
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1153

S
SunAhong1993 已提交
1154 1155
        paddle_op = 'paddle.nn.functional.avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only avg_pool1d, avg_pool2d and avg_pool3d are supported'
S
SunAhong1993 已提交
1156
        layer_attrs = {
S
SunAhong1993 已提交
1157 1158 1159
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1160
            "ceil_mode": ceil_mode,
S
SunAhong1993 已提交
1161
            "exclusive": True,
S
SunAhong1993 已提交
1162
            "name": string(node.name)
C
update  
channingss 已提交
1163
        }
S
SunAhong1993 已提交
1164 1165
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1166
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1167 1168
            outputs=[node.name], 
            **layer_attrs)
C
update  
channingss 已提交
1169

1170
    @print_mapping_info
C
update  
channingss 已提交
1171
    def Concat(self, node):
S
SunAhong1993 已提交
1172
        inputs_list = []
C
Channingss 已提交
1173
        dtypes = set()
C
update  
channingss 已提交
1174
        for i in range(len(node.layer.input)):
C
channingss 已提交
1175
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1176 1177
            inputs_list.append(ipt.name)
            dtypes.add(ipt.dtype)
C
Channingss 已提交
1178 1179
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1180
        axis = node.get_attr('axis')
S
SunAhong1993 已提交
1181 1182 1183 1184 1185
        self.paddle_graph.add_layer(
            'paddle.concat', 
            inputs={"x": inputs_list}, 
            outputs=[node.name], 
            axis=axis)
C
update  
channingss 已提交
1186

1187
    @print_mapping_info
C
update  
channingss 已提交
1188
    def Flatten(self, node):
C
channingss 已提交
1189
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1190
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
1191
        axis = node.get_attr('axis', 1)
S
SunAhong1993 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
            'paddle.reshape', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
            shape=shape_list)
C
update  
channingss 已提交
1206

1207
    @print_mapping_info
C
update  
channingss 已提交
1208
    def Gemm(self, node):
C
channingss 已提交
1209 1210 1211
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1212 1213 1214 1215 1216

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1217 1218 1219
        val_mm = node.name + '_mm'
        matmul_inputs = {"x": val_a.name, 
                         "y": val_b.name}
C
update  
channingss 已提交
1220 1221 1222 1223
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
S
SunAhong1993 已提交
1224 1225
        self.paddle_graph.add_layer(
            'paddle.matmul',
1226
            inputs=matmul_inputs,
S
SunAhong1993 已提交
1227 1228 1229 1230 1231 1232 1233
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
            "paddle.scale", 
            inputs={"x": val_mm}, 
            outputs=[val_mm],
            scale=alpha)
C
channingss 已提交
1234

C
update  
channingss 已提交
1235 1236
        if beta != 0:
            if beta == 1.:
S
SunAhong1993 已提交
1237 1238 1239 1240
                add_inputs = {"x": val_mm, 
                              "y": val_c.name}
                self.paddle_graph.add_layer(
                    "paddle.add",
1241
                    inputs=add_inputs,
S
SunAhong1993 已提交
1242
                    outputs=[node.name])
C
update  
channingss 已提交
1243
            else:
S
SunAhong1993 已提交
1244 1245 1246 1247 1248 1249
                var_beta = node.name + '_beta'
                self.paddle_graph.add_layer(
                    "paddle.scale",
                    inputs={"x": val_c.name},
                    outputs=[var_beta],
                    scale=beta)
C
channingss 已提交
1250
                add_inputs = {"x": val_mm, "y": var_beta}
S
SunAhong1993 已提交
1251 1252
                self.paddle_graph.add_layer(
                    "paddle.add",
1253
                    inputs=add_inputs,
S
SunAhong1993 已提交
1254
                    outputs=[node.name])
C
update  
channingss 已提交
1255

1256
    @print_mapping_info
C
update  
channingss 已提交
1257
    def Sum(self, node):
1258
        val_inps = node.layer.input
S
SunAhong1993 已提交
1259
        inputs_dict = {
1260
            "x": self.graph.get_input_node(
S
SunAhong1993 已提交
1261
                node, idx=0, copy=True).name,
1262
            "y": self.graph.get_input_node(
S
SunAhong1993 已提交
1263
                node, idx=1, copy=True).name,
1264
        }
S
SunAhong1993 已提交
1265 1266 1267
        self.paddle_graph.add_layer("paddle.add", 
                                    inputs=inputs_dict, 
                                    outputs=[node.name])
1268

C
channingss 已提交
1269 1270
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
S
SunAhong1993 已提交
1271 1272 1273
            inputs_dict = {
                "x": node.name,
                "y": y.name,
1274
            }
S
SunAhong1993 已提交
1275 1276 1277 1278
            self.paddle_graph.add_layer(
                "paddle.add", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
update  
channingss 已提交
1279

1280
    @print_mapping_info
C
update  
channingss 已提交
1281
    def MatMul(self, node):
C
channingss 已提交
1282 1283
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1284 1285
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
S
SunAhong1993 已提交
1286 1287
        inputs_dict = {"x": val_x.name, 
                       "y": val_y.name}
C
Channingss 已提交
1288
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
            y_squeeze = val_y.name + '_squeeze'
            self.paddle_graph.add_layer(
                "paddle.squeeze",
                inputs={"x": val_y.name},
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
Channingss 已提交
1300
        else:
S
SunAhong1993 已提交
1301 1302 1303 1304 1305
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
            
1306
    @print_mapping_info
C
update  
channingss 已提交
1307
    def BatchNormalization(self, node):
C
channingss 已提交
1308 1309 1310 1311 1312
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1313 1314 1315 1316

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1317 1318
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
S
SunAhong1993 已提交
1319
        layer_attrs = {
C
update  
channingss 已提交
1320 1321 1322
            "momentum": momentum,
            "epsilon": epsilon,
        }
S
SunAhong1993 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
        self.paddle_graph.add_layer(
            "paddle.nn.functional.batch_norm", 
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name,
                    "running_mean": val_mean.name,
                    "running_var": val_var.name}, 
            outputs=[node.name], 
            **layer_attrs)
        
1333
    @print_mapping_info
C
update  
channingss 已提交
1334
    def Transpose(self, node):
C
channingss 已提交
1335
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1336 1337 1338 1339
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1340 1341 1342 1343 1344
        self.paddle_graph.add_layer(
            "paddle.transpose", 
            inputs={"x": val_x.name},
            outputs=[node.name], 
            perm=perm)
C
update  
channingss 已提交
1345

1346
    @print_mapping_info
C
update  
channingss 已提交
1347
    def PRelu(self, node):
C
channingss 已提交
1348 1349
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1350

C
channingss 已提交
1351 1352
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
C
Channingss 已提交
1353
        if shape_slope == [1]:
C
channingss 已提交
1354
            mode = 'all'
C
Channingss 已提交
1355

S
SunAhong1993 已提交
1356 1357 1358 1359 1360 1361 1362 1363
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.static.nn.prelu", 
                inputs={"x": val_x.name,
                        "param_attr": val_slope.name}, 
                outputs=[node.name],
                mode="element")
        else:
S
SunAhong1993 已提交
1364 1365 1366 1367 1368 1369 1370
            if mode == 'channel':
                if len(shape_slope) > 1:
                    self.paddle_graph.add_layer(
                        "paddle.reshape", 
                        inputs={"x": val_slope.name}, 
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
S
SunAhong1993 已提交
1371 1372 1373 1374 1375
            self.paddle_graph.add_layer(
                "paddle.nn.functional.prelu", 
                inputs={"x": val_x.name,
                        "weight": val_slope.name}, 
                outputs=[node.name])
C
update  
channingss 已提交
1376

1377
    @print_mapping_info
C
update  
channingss 已提交
1378
    def Squeeze(self, node):
C
channingss 已提交
1379 1380
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
1381
        if len(val_x.out_shapes[0]) == 1:
S
SunAhong1993 已提交
1382 1383 1384 1385 1386
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_x.name},
                outputs=[node.name],
                dtype=string(val_x.dtype))
1387
        else:
S
SunAhong1993 已提交
1388 1389 1390 1391 1392
            self.paddle_graph.add_layer(
                "paddle.squeeze", 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                axis=axes)
R
root 已提交
1393

1394
    @print_mapping_info
C
channings 已提交
1395 1396 1397
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1398 1399 1400 1401 1402
        self.paddle_graph.add_layer(
            "paddle.equal",
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
1403

C
Channingss 已提交
1404 1405 1406 1407
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1408 1409 1410 1411
        self.paddle_graph.add_layer(
            "paddle.greater_than",
            inputs={'x': val_x.name,
                    'y': val_y.name},
S
SunAhong1993 已提交
1412
            outputs=[node.name],
C
Channingss 已提交
1413 1414
            param_attr=None)

1415
    @print_mapping_info
C
channings 已提交
1416 1417 1418 1419
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1420

S
SunAhong1993 已提交
1421 1422 1423 1424 1425
        not_condition = condition.name + '_not'
        self.paddle_graph.add_layer(
            "paddle.logical_not",
            inputs={"x": condition.name},
            outputs=[not_condition])
R
root 已提交
1426
        cast_not_condition = not_condition + '_cast'
S
SunAhong1993 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
        cast_condition = condition.name + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": condition.name},
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
        mul_val_x = val_x.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_x.name,
1442
                    'y': cast_condition},
S
SunAhong1993 已提交
1443 1444 1445 1446 1447
            outputs=[mul_val_x])
        mul_val_y = val_y.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_y.name,
1448
                    'y': cast_not_condition},
S
SunAhong1993 已提交
1449
            outputs=[mul_val_y])
1450

S
SunAhong1993 已提交
1451 1452
        self.paddle_graph.add_layer(
            "paddle.add",
1453 1454
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1455
            outputs=[node.name])
1456 1457

    @print_mapping_info
R
root 已提交
1458 1459
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1460 1461
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
S
SunAhong1993 已提交
1462 1463 1464 1465 1466 1467 1468
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1469
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1470
                perm=[1, 0])
1471
        if val_x_dim > 1:
S
SunAhong1993 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.split",
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
                "paddle.concat", 
                inputs={"x": val_x.name}, 
                outputs=[node.name])
1486 1487

    @print_mapping_info
C
update  
channingss 已提交
1488
    def Identity(self, node):
C
channingss 已提交
1489
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1490 1491 1492 1493 1494
        self.paddle_graph.add_layer(
            "paddle.assign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
        
1495
    @print_mapping_info
C
channings 已提交
1496 1497 1498 1499
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1500

1501
        if repeats is None:
S
SunAhong1993 已提交
1502
            repeats = val_repeats.name
J
jiangjiajun 已提交
1503
            if val_repeats.dtype != 'int32':
S
SunAhong1993 已提交
1504 1505 1506 1507 1508
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
                    outputs=["{}.tmp".format(repeats)],
                    dtype=string("int32"))
J
jiangjiajun 已提交
1509 1510
                repeats = "{}.tmp".format(repeats)

1511
        elif isinstance(repeats, int):
C
channings 已提交
1512
            repeats = [repeats]
R
root 已提交
1513

C
channings 已提交
1514
        attr = {
R
root 已提交
1515
            'expand_times': repeats,
S
SunAhong1993 已提交
1516
            "name": string(node.name),
C
channings 已提交
1517
        }
S
SunAhong1993 已提交
1518 1519 1520 1521 1522
        self.paddle_graph.add_layer(
            "paddle.tile", 
            inputs={"x": val_x.name}, 
                    outputs=[node.name], 
                    repeat_times=repeats)
R
root 已提交
1523

1524
    @print_mapping_info
C
update  
channingss 已提交
1525
    def MaxPool(self, node):
C
channingss 已提交
1526
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1527
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
S
SunAhong1993 已提交
1537 1538
        paddle_op = 'paddle.nn.functional.max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only max_pool1d, max_pool2d and max_pool3d are supported'
C
channingss 已提交
1539

C
channingss 已提交
1540 1541
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1542
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1543
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1544 1545 1546 1547 1548
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
S
SunAhong1993 已提交
1549 1550 1551 1552 1553
            
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1554 1555
            "ceil_mode": ceil_mode,
        }
S
SunAhong1993 已提交
1556 1557 1558 1559 1560
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
            outputs=[node.name], 
            **layer_attrs)
R
root 已提交
1561

1562
    @print_mapping_info
C
channings 已提交
1563
    def GlobalMaxPool(self, node):
S
SunAhong1993 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only adaptive_max_pool1d, adaptive_max_pool2d and adaptive_max_pool3d are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
        
1581
    @print_mapping_info
C
channings 已提交
1582
    def GlobalAveragePool(self, node):
S
SunAhong1993 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
R
root 已提交
1599

1600
    @print_mapping_info
C
update  
channingss 已提交
1601
    def Conv(self, node):
C
channingss 已提交
1602 1603
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1604 1605
        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1606
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1607 1608
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1609
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1610 1611
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1612
        num_out_channels = val_w.out_shapes[0][0]
S
SunAhong1993 已提交
1613 1614
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
C
update  
channingss 已提交
1615 1616

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1617 1618 1619
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1620

C
channingss 已提交
1621
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1622 1623
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1624
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1625 1626 1627 1628 1629
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1630

S
SunAhong1993 已提交
1631
        layer_attrs = {
C
update  
channingss 已提交
1632 1633 1634 1635
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
S
SunAhong1993 已提交
1636 1637
        }
        layer_inputs = {
S
SunAhong1993 已提交
1638
            "x": val_x if isinstance(val_x, str) else val_x.name,
S
SunAhong1993 已提交
1639
            "weight": val_w.name
C
update  
channingss 已提交
1640 1641
        }
        if has_bias:
S
SunAhong1993 已提交
1642
            layer_inputs["bias"] = val_b.name
S
fix  
SunAhong1993 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651
        if reduce(lambda x,y:x*y, input_shape) in [1, -1] and 1 not in input_shape:
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
                "paddle.reshape", 
                inputs={"x": layer_inputs["x"]}, 
                outputs=[layer_inputs["x"]], 
                shape=input_shape)
S
SunAhong1993 已提交
1652 1653 1654 1655 1656
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs=layer_inputs, 
            outputs=[node.name], 
            **layer_attrs)
C
channingss 已提交
1657

1658
    @print_mapping_info
C
channingss 已提交
1659
    def ConvTranspose(self, node):
C
channingss 已提交
1660 1661
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1662
        val_b = None
R
root 已提交
1663
        if len(node.layer.input) > 2:
C
channingss 已提交
1664
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1665 1666
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1667
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1668 1669 1670
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
S
SunAhong1993 已提交
1671
        num_in_channels = val_w.out_shapes[0][0]
C
channingss 已提交
1672
        num_out_channels = val_w.out_shapes[0][1]
S
SunAhong1993 已提交
1673
        paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)
C
channingss 已提交
1674

C
channingss 已提交
1675 1676 1677 1678 1679
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1680 1681 1682 1683

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1684

1685 1686
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1687
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1688 1689
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1690
                              kernel_shape[1] - 1) + 1 + out_padding[1]
S
SunAhong1993 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
        layer_inputs = {'x': val_x.name,
                       "weight": val_w.name}
        layer_attrs = {
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
            "groups": num_groups,
            "output_size": node.out_shapes[0][2:]}
        if val_b is not None:
            layer_inputs["bias"] = val_b.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
1702
            kernel=paddle_op,
S
SunAhong1993 已提交
1703 1704
            inputs=layer_inputs,
            outputs=[node.name],
S
fix  
SunAhong1993 已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
            **layer_attrs)
        
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'axis': axis,
                      'keepdim': keepdims}
        self.paddle_graph.add_layer(
            'paddle.argmax', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
C
Channingss 已提交
1718
            **layer_attrs)
S
SunAhong1993 已提交
1719 1720 1721 1722 1723 1724
        
    @print_mapping_info
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.shape", 
S
for pad  
SunAhong1993 已提交
1725
            inputs={"input": val_x.name}, 
S
SunAhong1993 已提交
1726
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1727 1728 1729 1730 1731
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))  
S
SunAhong1993 已提交
1732 1733 1734 1735
        self.paddle_graph.add_layer(
            "paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
C
Channingss 已提交
1736

S
SunAhong1993 已提交
1737 1738 1739
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1740 1741 1742 1743 1744 1745
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
1746 1747 1748 1749
        self.paddle_graph.add_layer(
            "paddle.sign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1750 1751 1752 1753 1754 1755
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": node.name}, 
                outputs=[node.name],
                dtype=string(node.dtype))
S
SunAhong1993 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

    @print_mapping_info
    def OneHot(self, node):
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
            "custom_layer:one_hot", 
            inputs={"indices": indices.name,
                    "depth": depth.name,
                    "values": values.name}, 
            outputs=[node.name],
            axis=axis)

    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.reciprocal", 
            inputs={"x": val_x.name}, 
1777
            outputs=[node.name])
S
SunAhong1993 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
        layer_attrs["largest"] = True if node.get_attr('largest', 1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted', 1) == 1 else False
        self.paddle_graph.add_layer(
            "paddle.topk", 
            inputs={"x": val_x.name,
                    "k": val_k.name}, 
            outputs=["{}_p{}".format(node.layer_name, 0), "{}_p{}".format(node.layer_name, 1)],
S
add lrn  
SunAhong1993 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
            **layer_attrs)
        
    @print_mapping_info
    def LRN(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
        layer_attrs = {
            'size': size,
            'alpha': alpha,
            'beta': beta,
            'k': bias
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1809
            "custom_layer:local_response_norm", 
S
add lrn  
SunAhong1993 已提交
1810 1811 1812
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
            **layer_attrs)
S
SunAhong1993 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859

    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w]
                )
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 3, 4, 1, 5, 2]
                )
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize]
                )
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[b, c // (blocksize ** 2), blocksize, blocksize, h, w]
                )
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
                perm=[0, 1, 4, 2, 5, 3]
                )
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
                shape=[b, c // (blocksize ** 2), h * blocksize, w * blocksize]
                )