opset.py 69.4 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16
from x2paddle.core.graph import GraphNode
C
channingss 已提交
17
from x2paddle.core.util import string
C
Channingss 已提交
18
from functools import reduce
C
update  
channingss 已提交
19
import numpy as np
C
channingss 已提交
20
import onnx
C
channingss 已提交
21
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
22
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
23
import logging as _logging
24
from collections import OrderedDict
C
channingss 已提交
25
import math
C
channingss 已提交
26
import os
S
SunAhong1993 已提交
27 28
import copy
import sys
C
channingss 已提交
29
import shutil
30

C
update  
channingss 已提交
31 32 33
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
34
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
35
    if 'Constant' in node.layer_type:
C
channingss 已提交
36
        return node.value
C
update  
channingss 已提交
37 38
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
39 40 41
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
42 43 44
    return None


C
Channingss 已提交
45 46 47 48 49 50
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
51
        if dim < -1:
C
Channingss 已提交
52 53 54 55 56 57 58
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True

59

C
Channingss 已提交
60
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
61 62 63 64 65 66 67
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
85
class OpSet9():
86
    elementwise_ops = {
S
SunAhong1993 已提交
87 88
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
fix  
SunAhong1993 已提交
89
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
90 91
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
R
root 已提交
92
    }
93

S
SunAhong1993 已提交
94 95 96 97 98
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
        'ReduceMean': ['paddle.mean',
                       dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
99
                       dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
100 101
        'ReduceSum': ['paddle.sum', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
102
                      dict(axes=None, keepdims=1)],
S
SunAhong1993 已提交
103 104
        'ReduceMin': ['paddle.min', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
105
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
106 107
        'ReduceMax': ['paddle.max', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
108
                      dict(axes=None, keepdim=1)],
S
for pad  
SunAhong1993 已提交
109 110
        'ReduceProd': ['paddle.prod', 
                      dict(axes='axis', keepdims='keepdim'), 
S
SunAhong1993 已提交
111
                      dict(axes=None, keepdim=1)],
S
SunAhong1993 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        # active function
        'Relu': ['paddle.nn.functional.relu'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                      dict(alpha='negative_slope'), 
                      dict(negative_slope=.01)],
        'Elu': ['paddle.nn.functional.elu', 
                dict(alpha='alpha'), 
                dict(alpha=1.)],
        'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', 
                            dict(alpha='threshold'),
                            dict(alpha=1.)],
        'Tanh': ['paddle.nn.functional.tanh'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softsign': ['paddle.nn.functional.softsign'],
        'Softplus': ['paddle.nn.functional.softplus', 
                     dict(threshold='threshold'), 
                     dict(threshold=float(sys.maxsize))],
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
130
        'Log': ['paddle.log'],
S
SunAhong1993 已提交
131 132 133 134 135 136 137
        'Softmax': ['paddle.nn.functional.softmax', 
                    dict(axis='axis'), 
                    dict(axis=1)],
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
138 139
    }

S
SunAhong1993 已提交
140
    def __init__(self, decoder, paddle_graph):
C
Channingss 已提交
141
        super(OpSet9, self).__init__()
142
        self.graph = decoder.graph
S
SunAhong1993 已提交
143 144 145 146
        self.paddle_graph = paddle_graph
        self.input_index = 0
        self.inputs_info = dict()
        self.params = dict()
R
root 已提交
147

148
    @print_mapping_info
S
SunAhong1993 已提交
149
    def directly_map(self, node, *args, **kwargs):
C
update  
channingss 已提交
150
        inputs = node.layer.input
S
SunAhong1993 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
        self.paddle_graph.add_layer(
            kernel=paddle_op,
            inputs={"x": input.name},
            outputs=[node.name],
            **layer_attrs)
            
174
    @print_mapping_info
175 176 177 178
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
179 180 181 182 183 184 185
        inputs_dict = {'x': val_x.name, 
                       'y': val_y.name}
        self.paddle_graph.add_layer(
            op_type, 
            inputs=inputs_dict, 
            outputs=[node.name])
        
186
    @print_mapping_info
C
update  
channingss 已提交
187
    def place_holder(self, node):
C
channings 已提交
188 189
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
190 191 192
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
193
                assert 'shape of input is not assigned'
S
SunAhong1993 已提交
194 195 196 197 198 199 200 201 202
        self.paddle_graph.add_layer(
            kernel="paddle.static.data",
            inputs={},
            outputs=[node.name],
            dtype=string(node.dtype),
            shape=shape,
            name=string(node.name))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1
C
update  
channingss 已提交
203

204
    @print_mapping_info
C
update  
channingss 已提交
205 206 207 208
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
209
        shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
210
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
211 212 213 214 215 216 217
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
218
        else:
S
SunAhong1993 已提交
219 220 221 222 223 224 225 226 227
            self.params[node.name] = node.weight
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
242
    def _interpolate(self, node):
C
channingss 已提交
243
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
244
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
245
        attrs = dict()
246
        if node.layer_type == 'Resize':
C
Channingss 已提交
247 248 249
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
250 251 252 253
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
254 255 256
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
S
fix  
SunAhong1993 已提交
257 258 259 260
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
261 262 263
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
S
SunAhong1993 已提交
264 265 266 267 268 269 270 271 272 273 274 275
                var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_sizes.name},
                    outputs=[var_nc, var_hw],
                    num_or_sections=[2, 2],
                    axis=0)
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": var_hw},
                    outputs=[var_hw],
                    dtype=string('int32'))
S
SunAhong1993 已提交
276 277 278
                inputs['size'] = var_hw
                attrs = {"align_corners": False,
                         "mode": string(node.get_attr('mode', 'nearest'))}
S
SunAhong1993 已提交
279
                self.paddle_graph.add_layer(
S
docs  
SunAhong1993 已提交
280
                    kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
281 282 283 284
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
285 286
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
287 288 289 290 291 292 293 294
            self.paddle_graph.add_layer(
                "paddle.slice",
                inputs={"input": val_scales.name},
                outputs=[val_scales.name],
                axes=[0],
                starts=[2],
                ends=[4])
            inputs['scale_factor'] = val_scales.name
R
root 已提交
295

C
channingss 已提交
296
        mode = node.get_attr('mode', 'nearest')
S
fix  
SunAhong1993 已提交
297
        attrs.update({"align_corners": False,
S
SunAhong1993 已提交
298
                 "mode": string(mode),
S
fix  
SunAhong1993 已提交
299
                 "align_mode": 1})
S
SunAhong1993 已提交
300 301 302
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
S
fix  
SunAhong1993 已提交
303
            attrs["align_corners"] = True
S
SunAhong1993 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
        
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
            min=0.0,
            max=1.0)  
        
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('int64'))   
R
root 已提交
340

341
    @print_mapping_info
C
channings 已提交
342 343 344
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
345 346 347

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
348 349
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
S
SunAhong1993 已提交
350
        layer_attrs = {
R
root 已提交
351 352 353 354 355
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
S
SunAhong1993 已提交
356
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
357
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
358 359 360 361
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
362 363

    @print_mapping_info
C
channings 已提交
364 365 366
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
367

C
channings 已提交
368 369
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
S
SunAhong1993 已提交
370
        layer_attrs = {
R
root 已提交
371 372 373 374
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
S
SunAhong1993 已提交
375
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
376
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
377 378 379 380
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
381 382

    @print_mapping_info
C
update  
channingss 已提交
383
    def Pad(self, node, op_independent=True):
C
channingss 已提交
384
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
385
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
386 387 388 389 390 391 392 393
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
C
update  
channingss 已提交
394 395
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
396 397
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
for pad  
SunAhong1993 已提交
398
        assume_pad = False
S
SunAhong1993 已提交
399 400
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
for pad  
SunAhong1993 已提交
401 402 403
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
C
update  
channingss 已提交
404
        else:
S
for pad  
SunAhong1993 已提交
405 406
            output_name = node.name
        layer_outputs = [output_name]
S
SunAhong1993 已提交
407 408
        if is_pads_attr:
            paddings = []
S
for pad  
SunAhong1993 已提交
409
            paddle_op = 'paddle.nn.functional.pad'
S
SunAhong1993 已提交
410 411
            if len(pads) == 10 and sum(pads) == 0:
                pads = pads[0: 6]
S
for pad  
SunAhong1993 已提交
412
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
413
                if data_shape:
S
for pad  
SunAhong1993 已提交
414
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW
S
SunAhong1993 已提交
415
                if output_shape:
S
for pad  
SunAhong1993 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads)  # NCHW
                if assume_pad:
                    if len(pads) == 2:
                        data_format = "NCL"
                    elif len(pads) == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    layer_attrs['pad'] = paddings
S
SunAhong1993 已提交
429
                    layer_attrs['data_format'] = string(data_format)
S
for pad  
SunAhong1993 已提交
430 431 432 433 434 435 436 437 438 439 440
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                    if assume_pad:
                        paddings = np.array(pads).reshape(
                            (2, -1)).transpose().astype("int32").flatten().tolist()
                        layer_attrs['pad'] = paddings
                    else:
                        raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
441
            elif len(pads) == 8:
S
for pad  
SunAhong1993 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                if assume_pad:
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['pad'] = paddings
                    else:
                        layer_attrs['pad'] = paddings
                        paddle_op = "custom_layer:pad_all_dim4_one_input"
S
SunAhong1993 已提交
456
            else:
S
for pad  
SunAhong1993 已提交
457
                 raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
458 459 460
            self.paddle_graph.add_layer(
                paddle_op, 
                inputs={'x': val_x.name}, 
S
for pad  
SunAhong1993 已提交
461
                outputs=layer_outputs, 
S
SunAhong1993 已提交
462
                **layer_attrs)
S
for pad  
SunAhong1993 已提交
463
            if not op_independent:
S
SunAhong1993 已提交
464
                return node.name + '_paded'
C
update  
channingss 已提交
465
        else:
S
for pad  
SunAhong1993 已提交
466 467
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
468
                if data_shape:
S
for pad  
SunAhong1993 已提交
469
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW
S
SunAhong1993 已提交
470
                if output_shape:
S
for pad  
SunAhong1993 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len  # NCHW 
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_with_two_input", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
                                "custom_layer:pad_all_dim2", 
                                inputs={'x': val_x.name, 'pad': val_pad.name}, 
                                outputs=layer_outputs, 
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                if assume_pad:
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_all_dim4", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs, 
                        value=value,
                        mode=string(mode))
            else:
                print(pads_len)
                raise Exception("The padding value is wrong!")   
S
SunAhong1993 已提交
516 517
            if not op_independent:
                return node.name + '_paded'
C
update  
channingss 已提交
518

519
    @print_mapping_info
C
update  
channingss 已提交
520
    def Unsqueeze(self, node):
C
channingss 已提交
521
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
522
        axes = node.get_attr('axes')
S
SunAhong1993 已提交
523
        layer_attrs = {'axis': axes}
R
root 已提交
524
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
525 526 527 528 529 530
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
531
        else:
S
SunAhong1993 已提交
532 533 534 535 536
            self.paddle_graph.add_layer(
                'paddle.unsqueeze', 
                inputs={"x": val_x.name}, 
                outputs=[node.name],
                **layer_attrs)
537

538
    @print_mapping_info
C
channingss 已提交
539
    def Shrink(self, node):
C
channingss 已提交
540
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
541 542 543
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
S
SunAhong1993 已提交
544 545 546 547 548
        self.paddle_graph.add_layer(
            'paddle.nn.functional.hardshrink', 
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
            threshold=lambd)
C
channingss 已提交
549

550
    @print_mapping_info
C
update  
channingss 已提交
551 552 553 554 555 556 557 558
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
559

C
update  
channingss 已提交
560
        shape = node.get_attr('shape', None)
R
root 已提交
561

C
update  
channingss 已提交
562
        if shape is None:
C
channingss 已提交
563
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
564 565
        if shape is None:
            shape = list(value.shape)
566 567 568
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
569
                            val_output.name, val_output.name)
570
        if len(value) == 1:
C
channingss 已提交
571
            value = value.tolist()
C
update  
channingss 已提交
572
            value = value[0]
S
SunAhong1993 已提交
573 574 575 576 577 578 579
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
C
channingss 已提交
580 581
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
582 583 584 585 586 587 588 589 590
            self.params[node.name] = value
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
591

592
    @print_mapping_info
C
update  
channingss 已提交
593
    def Resize(self, node):
594 595
        self._interpolate(node)

596
    @print_mapping_info
597 598 599
    def Upsample(self, node):
        self._interpolate(node)

600 601 602 603 604 605
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
S
SunAhong1993 已提交
606
        layer_attrs = {
S
fix  
SunAhong1993 已提交
607
            'eps': epsilon,
608
        }
S
SunAhong1993 已提交
609 610
        dim = len(val_x.out_shapes[0])
        if dim ==2 :
S
fix  
SunAhong1993 已提交
611
            layer_attrs["data_format"] = string("NC")
S
SunAhong1993 已提交
612
        elif dim == 3:
S
fix  
SunAhong1993 已提交
613
            layer_attrs["data_format"] = string("NCL")
S
SunAhong1993 已提交
614
        elif dim == 4:
S
fix  
SunAhong1993 已提交
615
            layer_attrs["data_format"] = string("NCHW")
S
SunAhong1993 已提交
616
        elif dim == 5:
S
fix  
SunAhong1993 已提交
617
            layer_attrs["data_format"] = string("NCDHW")
S
SunAhong1993 已提交
618 619 620
        else:
            raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.")
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
621
            "paddle.nn.functional.instance_norm", 
S
SunAhong1993 已提交
622 623 624
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name}, 
S
fix  
SunAhong1993 已提交
625
            outputs=[node.name], 
S
SunAhong1993 已提交
626
            **layer_attrs)
627 628

    @print_mapping_info
629
    def Expand(self, node):
C
channingss 已提交
630
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
631
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
632
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
633
        name_ones = node.name + '_ones'
C
Channingss 已提交
634
        attr_ones = {
S
SunAhong1993 已提交
635
            'shape': val_shape.name,
C
Channingss 已提交
636
            'dtype': string(val_x_dtype),
S
SunAhong1993 已提交
637
            'fill_value': 1
C
Channingss 已提交
638
        }
S
SunAhong1993 已提交
639 640 641 642 643 644 645 646 647 648 649
        self.paddle_graph.add_layer(
            'paddle.full',
            inputs={},
            outputs=[name_ones],
            **attr_ones)
        inputs_dict = {'x': name_ones, 
                       'y': val_x.name}
        self.paddle_graph.add_layer(
            'paddle.multiply',
            inputs=inputs_dict,
            outputs=[node.name])
C
update  
channingss 已提交
650

651
    @print_mapping_info
C
channingss 已提交
652 653 654 655
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
656
        axis = node.get_attr('axis', 0)
657 658
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
659
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
660
            if len(val_x.out_shapes[0]) <= 1:
S
SunAhong1993 已提交
661 662 663 664 665
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
C
Channingss 已提交
666 667
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
668 669 670 671 672 673 674 675 676 677 678
                    gather_ = node.name + '_1'
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
                        outputs=[node.name],
                        axis=[0])
C
Channingss 已提交
679
                else:
S
SunAhong1993 已提交
680 681 682 683 684
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
C
channingss 已提交
685 686
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
687
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            name_trans = val_x.name + '_trans'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices.name},
                outputs=[node.name])
            self.paddle_graph.add_layer(
                'paddle.transpose', 
                inputs={"x": node.name}, 
                outputs=[node.name], 
                perm=perm)
C
Channingss 已提交
704
            if len(indices_shape) < 1:
S
SunAhong1993 已提交
705 706 707 708 709
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
                    inputs={'x': node.name},
                    outputs=[node.name],
                    axis=[axis])
710 711 712
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
713 714 715 716
                indices_cast = indices.name + '_cast'
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
717
                    outputs=[indices_cast],
S
SunAhong1993 已提交
718 719
                    dtype=string('int64'))
                self.paddle_graph.add_layer(
S
for pad  
SunAhong1993 已提交
720 721 722 723
                    'paddle.nn.functional.embedding',
                    inputs={"x": indices_cast,
                            "weight": val_x.name},
                    outputs=[node.name])
724 725 726
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
727 728 729 730 731 732
                indices_reshape = indices.name + '_shape'
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": indices.name},
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])
733 734

                perm = list(range(len(val_x.out_shapes[0])))
S
SunAhong1993 已提交
735 736 737
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
738
                            'index': indices_reshape},
S
SunAhong1993 已提交
739
                    outputs=[node.name])
740 741 742 743 744 745
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
S
SunAhong1993 已提交
746 747 748 749 750
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=reshaped_shape)
751
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
752
            from functools import reduce
R
root 已提交
753
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
754 755 756 757 758 759
            indices_reshape = indices.name + '_shape'
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices_reshape],
                shape=[reshape_shape, ])
R
root 已提交
760

C
Channingss 已提交
761 762
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
763 764 765 766 767 768 769 770 771
            name_trans = val_x.name + '_transpose'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
772
                        'index': indices_reshape},
S
SunAhong1993 已提交
773 774 775 776 777 778 779
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[input_transpose],
                perm=perm)
C
Channingss 已提交
780 781 782 783 784 785
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
S
SunAhong1993 已提交
786 787 788 789 790
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
                outputs=[node.name],
                shape=reshaped_shape)
791

C
Channingss 已提交
792 793 794 795 796 797
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
S
SunAhong1993 已提交
798 799 800 801 802 803
            self.paddle_graph.add_layer(
                'paddle.scatter',
                inputs={'x': val_x.name,
                        'index': indices.name,
                        'updates': updates.name},
                outputs=[node.name])
C
Channingss 已提交
804
        else:
S
SunAhong1993 已提交
805
            input_inner_indices = node.name + '_input_inner_indices'
806
            shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
807 808 809 810 811 812 813 814 815 816 817 818 819
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices.name],
                shape=indices.out_shapes[0])

            zeros_like_val_x = val_x.name + '_zeros'
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
                inputs={"x": val_x.name},
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
820
                inputs={
S
SunAhong1993 已提交
821 822 823
                    'x': zeros_like_val_x,
                    'index': indices.name,
                    'updates': updates.name
C
Channingss 已提交
824
                },
S
SunAhong1993 已提交
825 826 827
                outputs=[input_inner_indices])
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
828
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
829 830 831 832 833 834 835 836
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": updates.name},
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
837
                inputs={
S
SunAhong1993 已提交
838 839
                    'x': zeros_like_val_x,
                    'index': indices.name,
C
Channingss 已提交
840 841
                    'updates': constant_minus_one
                },
S
SunAhong1993 已提交
842 843
                outputs=[indices_mask])
            constant_one = node.name + '_constant_1'
844
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
845 846 847 848 849 850 851 852 853
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": val_x.name},
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
            input_out_indices_mask = node.name + '_input_out_indices_mask'
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
854
                inputs={"x": indices_mask,
855
                        "y": constant_one},
S
SunAhong1993 已提交
856
                outputs=[input_out_indices_mask])
C
Channingss 已提交
857

S
SunAhong1993 已提交
858 859 860 861
            input_out_indices = node.name + '_input_out_indices'
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={"x": val_x.name,
C
Channingss 已提交
862
                        "y": input_out_indices_mask},
S
SunAhong1993 已提交
863
                outputs=[input_out_indices])
C
Channingss 已提交
864

S
SunAhong1993 已提交
865 866
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
867 868
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
869
                outputs=[node.name])
C
Channingss 已提交
870

871 872 873 874 875 876
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
S
SunAhong1993 已提交
877 878 879 880 881
        inputs = {'start': val_start.name, 
                  'end': val_limit.name, 
                  'step': val_delta.name}
        self.paddle_graph.add_layer(
            'paddle.arange',
882
            inputs=inputs,
S
SunAhong1993 已提交
883 884
            outputs=[node.name],
            dtype=string(dtype))
885 886

    @print_mapping_info
C
channingss 已提交
887
    def Slice(self, node):
C
channingss 已提交
888
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
889
        starts, ends, axes, steps = None, None, None, None
S
SunAhong1993 已提交
890
        layer_attrs = {}
C
channingss 已提交
891 892 893
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
C
Channingss 已提交
894
            starts_value = _const_weight_or_none(starts)
S
for pad  
SunAhong1993 已提交
895 896
            if starts_value is not None:
                starts_value = starts_value.tolist()
C
Channingss 已提交
897
            ends_value = _const_weight_or_none(ends)
S
for pad  
SunAhong1993 已提交
898 899 900 901 902
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
R
root 已提交
903
            if len(node.inputs) > 3:
S
for pad  
SunAhong1993 已提交
904 905
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
R
root 已提交
906
            if len(node.inputs) > 4:
C
channings 已提交
907
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
for pad  
SunAhong1993 已提交
908 909
                steps = _const_weight_or_none(steps).tolist()
            
S
SunAhong1993 已提交
910
            layer_attrs = {
911
                "axes": axes,
S
SunAhong1993 已提交
912 913
                "starts": starts.name,
                "ends": ends.name
914
            }
S
SunAhong1993 已提交
915
            if starts_value is not None and ends_value is not None and axes is not None:
C
Channingss 已提交
916
                starts_value = starts_value.copy()
917
                ends_value = ends_value.copy()
918 919 920 921
                #for idx in range(len(ends_value)):
                #    if ends_value[idx] > 2**31 - 1:
                #        ends_value[idx] = 2**31 - 1
                #print(val_x.out_shapes)
922
                for idx in range(len(ends_value)):
S
SunAhong1993 已提交
923
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]] and val_x.out_shapes[0][axes[idx]] > 0:
924
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
C
Channingss 已提交
925
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
S
SunAhong1993 已提交
926 927
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
S
SunAhong1993 已提交
928
                layer_attrs = {
929 930 931 932 933 934
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
935 936 937 938 939 940 941
                    starts_cast = starts.name + '_cast'
                    self.paddle_graph.add_layer(
                        'paddle.cast',
                        inputs={"x": starts.name},
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
942
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
943
                    ends_cast = ends.name + '_cast'
S
for pad  
SunAhong1993 已提交
944 945
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
946 947 948 949 950 951
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": ends.name},
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
C
channingss 已提交
952 953 954 955
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
956 957 958
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
S
SunAhong1993 已提交
959
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
960

S
for pad  
SunAhong1993 已提交
961

C
Channingss 已提交
962
        if steps is not None:
S
SunAhong1993 已提交
963 964 965 966 967 968
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
                'paddle.strided_slice', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
969
        else:
S
SunAhong1993 已提交
970 971 972 973 974
            self.paddle_graph.add_layer(
                'paddle.slice', 
                inputs={"input": val_x.name}, 
                outputs=[node.name],  
                **layer_attrs)
C
channingss 已提交
975

976
    @print_mapping_info
C
update  
channingss 已提交
977
    def ConstantOfShape(self, node):
C
channingss 已提交
978
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
979
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
980 981 982 983

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
984 985
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
986 987
        if len(value) == 1:
            value = value[0]
S
SunAhong1993 已提交
988
            layer_attrs = {
989
                'dtype': string(dtype),
S
SunAhong1993 已提交
990
                'fill_value': value
991
            }
S
SunAhong1993 已提交
992 993
            self.paddle_graph.add_layer(
                "paddle.full", 
S
SunAhong1993 已提交
994
                inputs={'shape': val_shape.name}, 
S
SunAhong1993 已提交
995 996
                outputs=[node.name],
                **layer_attrs)
C
update  
channingss 已提交
997

C
Channingss 已提交
998 999 1000 1001 1002 1003 1004 1005
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
S
SunAhong1993 已提交
1006
            layer_attrs = {
C
Channingss 已提交
1007 1008 1009
                'max': max_value,
                'min': min_value,
            }
S
SunAhong1993 已提交
1010 1011 1012 1013 1014
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1015
        else:
S
fix  
SunAhong1993 已提交
1016 1017
            min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
S
SunAhong1993 已提交
1018
            min_value = _const_weight_or_none(min_ipt)
S
fix  
SunAhong1993 已提交
1019
            max_value = _const_weight_or_none(max_ipt)
1020
            if max_value.shape == (1, ):
C
Channingss 已提交
1021
                max_value = max_value[0]
1022
            if min_value.shape == (1, ):
C
Channingss 已提交
1023 1024
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
S
SunAhong1993 已提交
1025 1026 1027 1028 1029 1030
            layer_attrs = {'max': max_value, 'min': min_value}
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1031 1032 1033
        else:
            raise

1034
    @print_mapping_info
C
update  
channingss 已提交
1035
    def Split(self, node):
C
channingss 已提交
1036
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1037
        paddle_op = 'split'
C
channingss 已提交
1038
        split = node.get_attr('split')
C
update  
channingss 已提交
1039
        axis = node.get_attr('axis', 0)
S
SunAhong1993 已提交
1040
        layer_attrs = {
C
channingss 已提交
1041
            'num_or_sections': split,
S
SunAhong1993 已提交
1042
            'axis': axis,
C
channingss 已提交
1043
        }
S
SunAhong1993 已提交
1044 1045
        outputs_list = list()
        if isinstance(split, list) or isinstance(split, tuple):
S
SunAhong1993 已提交
1046 1047 1048 1049 1050
            if len(split) == 1:
                outputs_list.append(node.name)
            else:
                for i in range(len(split)):
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
1051 1052 1053 1054 1055 1056 1057
        else:
            outputs_list.append(node.name)
        self.paddle_graph.add_layer(
            'paddle.split', 
            inputs={"x": val_x.name}, 
            outputs=outputs_list, 
            **layer_attrs)
C
update  
channingss 已提交
1058

1059
    @print_mapping_info
C
update  
channingss 已提交
1060
    def Reshape(self, node):
C
channingss 已提交
1061 1062
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1063
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
1064 1065 1066 1067
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
S
SunAhong1993 已提交
1068 1069 1070 1071 1072
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=shape_value.tolist())
C
Channingss 已提交
1073 1074
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
S
SunAhong1993 已提交
1075 1076 1077 1078 1079
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
1080
        else:
1081 1082
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
S
SunAhong1993 已提交
1083 1084 1085 1086 1087
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    shape=val_shape.out_shapes[0])
S
for pad  
SunAhong1993 已提交
1088 1089 1090 1091 1092 1093
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1094 1095 1096 1097
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1098
                outputs=[node.name])
1099 1100

    @print_mapping_info
C
update  
channingss 已提交
1101
    def Cast(self, node):
C
channingss 已提交
1102
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
S
SunAhong1993 已提交
1112 1113 1114 1115 1116
        self.paddle_graph.add_layer(
            'paddle.cast', 
            inputs={'x': val_input.name}, 
            outputs=[node.name], 
            dtype=string(dtype))
C
update  
channingss 已提交
1117

C
Channingss 已提交
1118 1119 1120
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1121 1122 1123
        self.paddle_graph.add_layer('paddle.logical_not', 
                                    inputs={'x': val_input.name}, 
                                    outputs=[node.name])
C
Channingss 已提交
1124

1125
    @print_mapping_info
C
update  
channingss 已提交
1126
    def AveragePool(self, node):
C
channingss 已提交
1127
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1128 1129

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1130 1131 1132 1133 1134 1135
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
C
channingss 已提交
1136

C
channingss 已提交
1137 1138
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1139
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1140
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1141 1142 1143 1144 1145
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1146

S
SunAhong1993 已提交
1147 1148
        paddle_op = 'paddle.nn.functional.avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only avg_pool1d, avg_pool2d and avg_pool3d are supported'
S
SunAhong1993 已提交
1149
        layer_attrs = {
S
SunAhong1993 已提交
1150 1151 1152
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1153
            "ceil_mode": ceil_mode,
S
SunAhong1993 已提交
1154
            "exclusive": True,
S
SunAhong1993 已提交
1155
            "name": string(node.name)
C
update  
channingss 已提交
1156
        }
S
SunAhong1993 已提交
1157 1158
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1159
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1160 1161
            outputs=[node.name], 
            **layer_attrs)
C
update  
channingss 已提交
1162

1163
    @print_mapping_info
C
update  
channingss 已提交
1164
    def Concat(self, node):
S
SunAhong1993 已提交
1165
        inputs_list = []
C
Channingss 已提交
1166
        dtypes = set()
C
update  
channingss 已提交
1167
        for i in range(len(node.layer.input)):
C
channingss 已提交
1168
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1169 1170
            inputs_list.append(ipt.name)
            dtypes.add(ipt.dtype)
C
Channingss 已提交
1171 1172
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1173
        axis = node.get_attr('axis')
S
SunAhong1993 已提交
1174 1175 1176 1177 1178
        self.paddle_graph.add_layer(
            'paddle.concat', 
            inputs={"x": inputs_list}, 
            outputs=[node.name], 
            axis=axis)
C
update  
channingss 已提交
1179

1180
    @print_mapping_info
C
update  
channingss 已提交
1181
    def Flatten(self, node):
C
channingss 已提交
1182
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1183
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
1184
        axis = node.get_attr('axis', 1)
S
SunAhong1993 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
            'paddle.reshape', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
            shape=shape_list)
C
update  
channingss 已提交
1199

1200
    @print_mapping_info
C
update  
channingss 已提交
1201
    def Gemm(self, node):
C
channingss 已提交
1202 1203 1204
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1205 1206 1207 1208 1209

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1210 1211 1212
        val_mm = node.name + '_mm'
        matmul_inputs = {"x": val_a.name, 
                         "y": val_b.name}
C
update  
channingss 已提交
1213 1214 1215 1216
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
S
SunAhong1993 已提交
1217 1218
        self.paddle_graph.add_layer(
            'paddle.matmul',
1219
            inputs=matmul_inputs,
S
SunAhong1993 已提交
1220 1221 1222 1223 1224 1225 1226
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
            "paddle.scale", 
            inputs={"x": val_mm}, 
            outputs=[val_mm],
            scale=alpha)
C
channingss 已提交
1227

C
update  
channingss 已提交
1228 1229
        if beta != 0:
            if beta == 1.:
S
SunAhong1993 已提交
1230 1231 1232 1233
                add_inputs = {"x": val_mm, 
                              "y": val_c.name}
                self.paddle_graph.add_layer(
                    "paddle.add",
1234
                    inputs=add_inputs,
S
SunAhong1993 已提交
1235
                    outputs=[node.name])
C
update  
channingss 已提交
1236
            else:
S
SunAhong1993 已提交
1237 1238 1239 1240 1241 1242
                var_beta = node.name + '_beta'
                self.paddle_graph.add_layer(
                    "paddle.scale",
                    inputs={"x": val_c.name},
                    outputs=[var_beta],
                    scale=beta)
C
channingss 已提交
1243
                add_inputs = {"x": val_mm, "y": var_beta}
S
SunAhong1993 已提交
1244 1245
                self.paddle_graph.add_layer(
                    "paddle.add",
1246
                    inputs=add_inputs,
S
SunAhong1993 已提交
1247
                    outputs=[node.name])
C
update  
channingss 已提交
1248

1249
    @print_mapping_info
C
update  
channingss 已提交
1250
    def Sum(self, node):
1251
        val_inps = node.layer.input
S
SunAhong1993 已提交
1252
        inputs_dict = {
1253
            "x": self.graph.get_input_node(
S
SunAhong1993 已提交
1254
                node, idx=0, copy=True).name,
1255
            "y": self.graph.get_input_node(
S
SunAhong1993 已提交
1256
                node, idx=1, copy=True).name,
1257
        }
S
SunAhong1993 已提交
1258 1259 1260
        self.paddle_graph.add_layer("paddle.add", 
                                    inputs=inputs_dict, 
                                    outputs=[node.name])
1261

C
channingss 已提交
1262 1263
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
S
SunAhong1993 已提交
1264 1265 1266
            inputs_dict = {
                "x": node.name,
                "y": y.name,
1267
            }
S
SunAhong1993 已提交
1268 1269 1270 1271
            self.paddle_graph.add_layer(
                "paddle.add", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
update  
channingss 已提交
1272

1273
    @print_mapping_info
C
update  
channingss 已提交
1274
    def MatMul(self, node):
C
channingss 已提交
1275 1276
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1277 1278
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
S
SunAhong1993 已提交
1279 1280
        inputs_dict = {"x": val_x.name, 
                       "y": val_y.name}
C
Channingss 已提交
1281
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
            y_squeeze = val_y.name + '_squeeze'
            self.paddle_graph.add_layer(
                "paddle.squeeze",
                inputs={"x": val_y.name},
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
Channingss 已提交
1293
        else:
S
SunAhong1993 已提交
1294 1295 1296 1297 1298
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
            
1299
    @print_mapping_info
C
update  
channingss 已提交
1300
    def BatchNormalization(self, node):
C
channingss 已提交
1301 1302 1303 1304 1305
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1306 1307 1308 1309

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1310 1311
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
S
SunAhong1993 已提交
1312
        layer_attrs = {
C
update  
channingss 已提交
1313 1314 1315
            "momentum": momentum,
            "epsilon": epsilon,
        }
S
SunAhong1993 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        self.paddle_graph.add_layer(
            "paddle.nn.functional.batch_norm", 
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name,
                    "running_mean": val_mean.name,
                    "running_var": val_var.name}, 
            outputs=[node.name], 
            **layer_attrs)
        
1326
    @print_mapping_info
C
update  
channingss 已提交
1327
    def Transpose(self, node):
C
channingss 已提交
1328
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1329 1330 1331 1332
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1333 1334 1335 1336 1337
        self.paddle_graph.add_layer(
            "paddle.transpose", 
            inputs={"x": val_x.name},
            outputs=[node.name], 
            perm=perm)
C
update  
channingss 已提交
1338

1339
    @print_mapping_info
C
update  
channingss 已提交
1340
    def PRelu(self, node):
C
channingss 已提交
1341 1342
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1343

C
channingss 已提交
1344 1345
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
C
Channingss 已提交
1346
        if shape_slope == [1]:
C
channingss 已提交
1347
            mode = 'all'
C
Channingss 已提交
1348

S
SunAhong1993 已提交
1349 1350 1351 1352 1353 1354 1355 1356
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.static.nn.prelu", 
                inputs={"x": val_x.name,
                        "param_attr": val_slope.name}, 
                outputs=[node.name],
                mode="element")
        else:
S
SunAhong1993 已提交
1357 1358 1359 1360 1361 1362 1363
            if mode == 'channel':
                if len(shape_slope) > 1:
                    self.paddle_graph.add_layer(
                        "paddle.reshape", 
                        inputs={"x": val_slope.name}, 
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
S
SunAhong1993 已提交
1364 1365 1366 1367 1368
            self.paddle_graph.add_layer(
                "paddle.nn.functional.prelu", 
                inputs={"x": val_x.name,
                        "weight": val_slope.name}, 
                outputs=[node.name])
C
update  
channingss 已提交
1369

1370
    @print_mapping_info
C
update  
channingss 已提交
1371
    def Squeeze(self, node):
C
channingss 已提交
1372 1373
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
1374
        if len(val_x.out_shapes[0]) == 1:
S
SunAhong1993 已提交
1375 1376 1377 1378 1379
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_x.name},
                outputs=[node.name],
                dtype=string(val_x.dtype))
1380
        else:
S
SunAhong1993 已提交
1381 1382 1383 1384 1385
            self.paddle_graph.add_layer(
                "paddle.squeeze", 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                axis=axes)
R
root 已提交
1386

1387
    @print_mapping_info
C
channings 已提交
1388 1389 1390
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1391 1392 1393 1394 1395
        self.paddle_graph.add_layer(
            "paddle.equal",
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
1396

C
Channingss 已提交
1397 1398 1399 1400
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1401 1402 1403 1404
        self.paddle_graph.add_layer(
            "paddle.greater_than",
            inputs={'x': val_x.name,
                    'y': val_y.name},
S
SunAhong1993 已提交
1405
            outputs=[node.name],
C
Channingss 已提交
1406 1407
            param_attr=None)

1408
    @print_mapping_info
C
channings 已提交
1409 1410 1411 1412
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1413

S
SunAhong1993 已提交
1414 1415 1416 1417 1418
        not_condition = condition.name + '_not'
        self.paddle_graph.add_layer(
            "paddle.logical_not",
            inputs={"x": condition.name},
            outputs=[not_condition])
R
root 已提交
1419
        cast_not_condition = not_condition + '_cast'
S
SunAhong1993 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
        cast_condition = condition.name + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": condition.name},
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
        mul_val_x = val_x.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_x.name,
1435
                    'y': cast_condition},
S
SunAhong1993 已提交
1436 1437 1438 1439 1440
            outputs=[mul_val_x])
        mul_val_y = val_y.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_y.name,
1441
                    'y': cast_not_condition},
S
SunAhong1993 已提交
1442
            outputs=[mul_val_y])
1443

S
SunAhong1993 已提交
1444 1445
        self.paddle_graph.add_layer(
            "paddle.add",
1446 1447
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1448
            outputs=[node.name])
1449 1450

    @print_mapping_info
R
root 已提交
1451 1452
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1453 1454
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
S
SunAhong1993 已提交
1455 1456 1457 1458 1459 1460 1461
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1462
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1463
                perm=[1, 0])
1464
        if val_x_dim > 1:
S
SunAhong1993 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.split",
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
                "paddle.concat", 
                inputs={"x": val_x.name}, 
                outputs=[node.name])
1479 1480

    @print_mapping_info
C
update  
channingss 已提交
1481
    def Identity(self, node):
C
channingss 已提交
1482
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1483 1484 1485 1486 1487
        self.paddle_graph.add_layer(
            "paddle.assign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
        
1488
    @print_mapping_info
C
channings 已提交
1489 1490 1491 1492
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1493

1494
        if repeats is None:
S
SunAhong1993 已提交
1495
            repeats = val_repeats.name
J
jiangjiajun 已提交
1496
            if val_repeats.dtype != 'int32':
S
SunAhong1993 已提交
1497 1498 1499 1500 1501
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
                    outputs=["{}.tmp".format(repeats)],
                    dtype=string("int32"))
J
jiangjiajun 已提交
1502 1503
                repeats = "{}.tmp".format(repeats)

1504
        elif isinstance(repeats, int):
C
channings 已提交
1505
            repeats = [repeats]
R
root 已提交
1506

C
channings 已提交
1507
        attr = {
R
root 已提交
1508
            'expand_times': repeats,
S
SunAhong1993 已提交
1509
            "name": string(node.name),
C
channings 已提交
1510
        }
S
SunAhong1993 已提交
1511 1512 1513 1514 1515
        self.paddle_graph.add_layer(
            "paddle.tile", 
            inputs={"x": val_x.name}, 
                    outputs=[node.name], 
                    repeat_times=repeats)
R
root 已提交
1516

1517
    @print_mapping_info
C
update  
channingss 已提交
1518
    def MaxPool(self, node):
C
channingss 已提交
1519
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1520
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
S
SunAhong1993 已提交
1530 1531
        paddle_op = 'paddle.nn.functional.max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only max_pool1d, max_pool2d and max_pool3d are supported'
C
channingss 已提交
1532

C
channingss 已提交
1533 1534
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1535
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1536
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1537 1538 1539 1540 1541
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
S
SunAhong1993 已提交
1542 1543 1544 1545 1546
            
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1547 1548
            "ceil_mode": ceil_mode,
        }
S
SunAhong1993 已提交
1549 1550 1551 1552 1553
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
            outputs=[node.name], 
            **layer_attrs)
R
root 已提交
1554

1555
    @print_mapping_info
C
channings 已提交
1556
    def GlobalMaxPool(self, node):
S
SunAhong1993 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only adaptive_max_pool1d, adaptive_max_pool2d and adaptive_max_pool3d are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
        
1574
    @print_mapping_info
C
channings 已提交
1575
    def GlobalAveragePool(self, node):
S
SunAhong1993 已提交
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
R
root 已提交
1592

1593
    @print_mapping_info
C
update  
channingss 已提交
1594
    def Conv(self, node):
C
channingss 已提交
1595 1596
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1597 1598
        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1599
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1600 1601
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1602
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1603 1604
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1605
        num_out_channels = val_w.out_shapes[0][0]
S
SunAhong1993 已提交
1606 1607
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
C
update  
channingss 已提交
1608 1609

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1610 1611 1612
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1613

C
channingss 已提交
1614
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1615 1616
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1617
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1618 1619 1620 1621 1622
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1623

S
SunAhong1993 已提交
1624
        layer_attrs = {
C
update  
channingss 已提交
1625 1626 1627 1628
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
S
SunAhong1993 已提交
1629 1630
        }
        layer_inputs = {
S
SunAhong1993 已提交
1631
            "x": val_x if isinstance(val_x, str) else val_x.name,
S
SunAhong1993 已提交
1632
            "weight": val_w.name
C
update  
channingss 已提交
1633 1634
        }
        if has_bias:
S
SunAhong1993 已提交
1635
            layer_inputs["bias"] = val_b.name
S
fix  
SunAhong1993 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
        if reduce(lambda x,y:x*y, input_shape) in [1, -1] and 1 not in input_shape:
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
                "paddle.reshape", 
                inputs={"x": layer_inputs["x"]}, 
                outputs=[layer_inputs["x"]], 
                shape=input_shape)
S
SunAhong1993 已提交
1645 1646 1647 1648 1649
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs=layer_inputs, 
            outputs=[node.name], 
            **layer_attrs)
C
channingss 已提交
1650

1651
    @print_mapping_info
C
channingss 已提交
1652
    def ConvTranspose(self, node):
C
channingss 已提交
1653 1654
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1655
        val_b = None
R
root 已提交
1656
        if len(node.layer.input) > 2:
C
channingss 已提交
1657
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1658 1659
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1660
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1661 1662 1663
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
S
SunAhong1993 已提交
1664
        num_in_channels = val_w.out_shapes[0][0]
C
channingss 已提交
1665
        num_out_channels = val_w.out_shapes[0][1]
S
SunAhong1993 已提交
1666
        paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)
C
channingss 已提交
1667

C
channingss 已提交
1668 1669 1670 1671 1672
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1673 1674 1675 1676

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1677

1678 1679
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1680
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1681 1682
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1683
                              kernel_shape[1] - 1) + 1 + out_padding[1]
S
SunAhong1993 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        layer_inputs = {'x': val_x.name,
                       "weight": val_w.name}
        layer_attrs = {
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
            "groups": num_groups,
            "output_size": node.out_shapes[0][2:]}
        if val_b is not None:
            layer_inputs["bias"] = val_b.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
1695
            kernel=paddle_op,
S
SunAhong1993 已提交
1696 1697
            inputs=layer_inputs,
            outputs=[node.name],
S
fix  
SunAhong1993 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            **layer_attrs)
        
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'axis': axis,
                      'keepdim': keepdims}
        self.paddle_graph.add_layer(
            'paddle.argmax', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
C
Channingss 已提交
1711
            **layer_attrs)
S
SunAhong1993 已提交
1712 1713 1714 1715 1716 1717
        
    @print_mapping_info
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.shape", 
S
for pad  
SunAhong1993 已提交
1718
            inputs={"input": val_x.name}, 
S
SunAhong1993 已提交
1719
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1720 1721 1722 1723 1724
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))  
S
SunAhong1993 已提交
1725 1726 1727 1728
        self.paddle_graph.add_layer(
            "paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])
C
Channingss 已提交
1729

S
SunAhong1993 已提交
1730 1731 1732
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1733 1734 1735 1736 1737 1738
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
1739 1740 1741 1742
        self.paddle_graph.add_layer(
            "paddle.sign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1743 1744 1745 1746 1747 1748
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": node.name}, 
                outputs=[node.name],
                dtype=string(node.dtype))
S
SunAhong1993 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    @print_mapping_info
    def OneHot(self, node):
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
            "custom_layer:one_hot", 
            inputs={"indices": indices.name,
                    "depth": depth.name,
                    "values": values.name}, 
            outputs=[node.name],
            axis=axis)

    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.reciprocal", 
            inputs={"x": val_x.name}, 
1770
            outputs=[node.name])
S
SunAhong1993 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
        layer_attrs["largest"] = True if node.get_attr('largest', 1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted', 1) == 1 else False
        self.paddle_graph.add_layer(
            "paddle.topk", 
            inputs={"x": val_x.name,
                    "k": val_k.name}, 
            outputs=["{}_p{}".format(node.layer_name, 0), "{}_p{}".format(node.layer_name, 1)],
S
add lrn  
SunAhong1993 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
            **layer_attrs)
        
    @print_mapping_info
    def LRN(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
        layer_attrs = {
            'size': size,
            'alpha': alpha,
            'beta': beta,
            'k': bias
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1802
            "custom_layer:local_response_norm", 
S
add lrn  
SunAhong1993 已提交
1803 1804 1805
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
            **layer_attrs)