opset.py 57.5 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
C
Channingss 已提交
21
from functools import reduce
C
update  
channingss 已提交
22
import numpy as np
C
channingss 已提交
23
import onnx
C
channingss 已提交
24
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
25
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
26
import logging as _logging
27
from collections import OrderedDict
C
channingss 已提交
28
import math
C
channingss 已提交
29 30
import os
import shutil
31

C
update  
channingss 已提交
32 33 34
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
35
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
36
    if 'Constant' in node.layer_type:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
40 41 42
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
43 44 45
    return None


C
Channingss 已提交
46 47 48 49 50 51
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
52
        if dim < -1:
C
Channingss 已提交
53 54 55 56 57 58 59 60
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


C
Channingss 已提交
61
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
62 63 64 65 66 67 68
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
86
class OpSet9():
87 88 89 90 91
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
92 93
        'Pow': 'elementwise_pow',
    }
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
129 130 131 132
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
157
    default_ioa_constraint = {}
158 159

    def __init__(self, decoder):
C
Channingss 已提交
160
        super(OpSet9, self).__init__()
161
        self.graph = decoder.graph
C
update  
channingss 已提交
162 163 164
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
165
        self.used_custom_layers = dict()
R
root 已提交
166

167
    @print_mapping_info
C
channingss 已提交
168
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
169 170 171 172
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
173 174 175
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
176 177 178 179 180 181 182 183
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
184
            fill_name_field, ) = info
C
update  
channingss 已提交
185

186 187
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
188 189 190 191 192 193 194 195 196 197 198 199
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
200
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
201
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
202 203 204 205
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
206 207 208
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
209
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
210
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
211
            attr['name'] = string(node.layer_name)
212 213 214 215 216 217 218 219 220 221
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
222 223 224
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
225
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
226 227 228
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
229 230 231 232 233 234
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
235 236
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
237
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
238 239 240
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
241

242
    @print_mapping_info
243 244 245
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
246

247 248
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
249 250 251
        inputs = {'x': val_x, 'y': val_y}
        node.fluid_code.add_layer(
            op_type, inputs=inputs, output=node, param_attr=None)
C
channingss 已提交
252

253
    @print_mapping_info
C
update  
channingss 已提交
254
    def place_holder(self, node):
C
channingss 已提交
255
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
256

C
channings 已提交
257 258
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
259 260 261
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
262
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
263 264
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
265
            "shape": shape,
C
update  
channingss 已提交
266 267 268 269
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

270 271
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
272

273
    @print_mapping_info
C
update  
channingss 已提交
274 275 276 277
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
278
        shape = node.out_shapes[0]
C
channingss 已提交
279 280
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
281 282 283 284 285 286 287
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
318
    def _interpolate(self, node):
C
channingss 已提交
319
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
Channingss 已提交
320
        inputs = {'input': val_x}
321
        if node.layer_type == 'Resize':
C
Channingss 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
                var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw'
                node.fluid_code.add_layer(
                    'split',
                    inputs=val_sizes,
                    output=var_nc + ',' + var_hw,
                    param_attr={
                        'dim': 0,
                        'num_or_sections': [2, 2],
                    })
                node.fluid_code.add_layer(
                    "cast",
                    inputs=var_hw,
                    output=var_hw,
                    param_attr={'dtype': string('int32')})
                inputs['out_shape'] = var_hw
348 349
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
350
            inputs['scale'] = val_scales
R
root 已提交
351 352

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
353 354
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
355
        if 'linear' in mode:
R
root 已提交
356 357 358
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
359
            fluid_op = 'resize_bilinear'
360
        node.fluid_code.add_layer(
C
Channingss 已提交
361
            fluid_op, inputs=inputs, output=node, param_attr=attr)
R
root 已提交
362

363
    @print_mapping_info
C
channings 已提交
364 365 366
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
367 368 369

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
370 371 372
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
373 374 375 376 377
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
378 379 380 381 382 383 384 385
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
386 387 388
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
389

C
channings 已提交
390 391 392
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
393 394 395 396
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
397 398 399 400 401 402 403 404
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
405
    def Pad(self, node, op_independent=True):
C
channingss 已提交
406
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
407 408 409
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
410 411
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
433 434 435 436
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
437 438 439
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
440 441
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
442 443
        else:
            attr['name'] = string(node.layer_name + '_paded')
444 445 446 447 448
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
449 450
            return node.layer_name + '_paded'

451
    @print_mapping_info
C
update  
channingss 已提交
452
    def Unsqueeze(self, node):
C
channingss 已提交
453
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
454
        axes = node.get_attr('axes')
455
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
456
        if len(val_x.out_shapes[0]) == 0:
457 458 459 460 461 462
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
463
        else:
C
update  
Channingss 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            if str(val_x.dtype) == 'bool':
                val_x_cast = val_x.layer_name + '_cast'
                node.fluid_code.add_layer(
                    'cast',
                    inputs=val_x,
                    output=val_x_cast,
                    param_attr={'dtype': string('int64')})
                node.fluid_code.add_layer(
                    'unsqueeze',
                    inputs=val_x_cast,
                    output=node,
                    param_attr=attr)
            else:
                node.fluid_code.add_layer(
                    'unsqueeze', inputs=val_x, output=node, param_attr=attr)
479

480
    @print_mapping_info
C
channingss 已提交
481
    def Shrink(self, node):
C
channingss 已提交
482
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
483 484 485 486
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
487 488
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
489

490
    @print_mapping_info
C
update  
channingss 已提交
491 492 493 494 495 496 497 498
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
499

C
update  
channingss 已提交
500
        shape = node.get_attr('shape', None)
R
root 已提交
501

C
update  
channingss 已提交
502
        if shape is None:
C
channingss 已提交
503
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
504 505
        if shape is None:
            shape = list(value.shape)
506 507 508 509
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
510
        if len(value) == 1:
C
channingss 已提交
511
            value = value.tolist()
C
update  
channingss 已提交
512 513 514 515 516
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
517 518
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
519
        else:
520 521
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
522 523 524 525 526 527 528 529
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
530 531
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
532

533
    @print_mapping_info
C
update  
channingss 已提交
534
    def Resize(self, node):
535 536
        self._interpolate(node)

537
    @print_mapping_info
538 539 540
    def Upsample(self, node):
        self._interpolate(node)

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
556
    def Expand(self, node):
C
channingss 已提交
557
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
558
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
559
        if len(val_shape.outputs) == 1:
560 561
            self.omit_nodes.append(val_shape.layer_name)
        val_x_dtype = val_x.dtype
R
root 已提交
562
        name_ones = node.layer_name + '_ones'
C
Channingss 已提交
563 564 565 566 567
        attr_ones = {
            'shape': val_shape.layer_name,
            'dtype': string(val_x_dtype),
            'value': 1
        }
568
        node.fluid_code.add_layer(
C
Channingss 已提交
569 570 571 572
            'fill_constant',
            inputs=None,
            output=name_ones,
            param_attr=attr_ones)
R
root 已提交
573
        inputs = {'x': name_ones, 'y': val_x}
574 575 576 577
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
C
Channingss 已提交
578
            param_attr=None)
C
update  
channingss 已提交
579

580
    @print_mapping_info
C
channingss 已提交
581 582 583 584
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
585
        axis = node.get_attr('axis', 0)
586 587
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
588
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
            if len(val_x.out_shapes[0]) <= 1:
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices},
                    output=node,
                    param_attr=None)
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
                    gather_ = node.layer_name + '_1'
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=gather_,
                        param_attr=None)
                    node.fluid_code.add_layer(
                        'squeeze',
                        inputs={'input': gather_,
                                'axes': [0]},
                        output=node,
                        param_attr=None)
                else:
                    node.fluid_code.add_layer(
                        'gather',
                        inputs={'input': val_x,
                                'index': indices},
                        output=node,
                        param_attr=None)
C
channingss 已提交
618 619
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
620 621 622
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
623 624 625 626 627 628 629 630 631 632 633 634 635
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
636 637 638 639
            if len(indices_shape) < 1:
                node.fluid_code.add_layer(
                    'squeeze',
                    inputs={'input': node,
C
Channingss 已提交
640
                            'axes': [axis]},
C
Channingss 已提交
641 642
                    output=node,
                    param_attr=None)
643 644 645
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
C
Channingss 已提交
646
                indices_cast = indices.layer_name + '_cast'
C
update  
Channingss 已提交
647 648 649
                node.fluid_code.add_layer(
                    'cast',
                    inputs=indices,
C
Channingss 已提交
650
                    output=indices_cast,
C
update  
Channingss 已提交
651
                    param_attr={'dtype': string('int64')})
652 653
                node.fluid_code.add_layer(
                    'embedding',
C
Channingss 已提交
654
                    inputs=indices_cast,
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
690
            from functools import reduce
R
root 已提交
691
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
692 693 694 695 696 697
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
698

C
Channingss 已提交
699 700 701
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
C
fix bug  
Channingss 已提交
702
            name_trans = val_x.layer_name + '_transpose'
703 704 705 706 707 708 709 710 711 712 713
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
C
fix bug  
Channingss 已提交
714
            input_transpose = node.layer_name + '_transpose'
715
            node.fluid_code.add_layer(
C
fix bug  
Channingss 已提交
716 717 718 719
                'transpose',
                inputs=node,
                output=input_transpose,
                param_attr=attr_trans)
C
Channingss 已提交
720 721 722 723 724 725
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
726 727
            node.fluid_code.add_layer(
                'reshape',
C
fix bug  
Channingss 已提交
728
                inputs=input_transpose,
729 730 731
                output=node,
                param_attr={'shape': reshaped_shape})

C
Channingss 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                'scatter',
                inputs={'input': val_x,
                        'index': indices,
                        'updates': updates},
                output=node,
                param_attr=None)
        else:
            input_inner_indices = node.layer_name + '_input_inner_indices'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': updates
                },
                output=input_inner_indices,
                param_attr=None)

            constant_minus_one = node.layer_name + '_constant_minus_one'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_minus_one,
                param_attr={
                    'shape': updates.out_shapes[0],
                    'dtype': string(updates.dtype),
                    'value': -1
                })

            indices_mask = node.layer_name + '_indices_mask'
            node.fluid_code.add_layer(
                'scatter_nd',
                inputs={
                    'shape': val_x.out_shapes[0],
                    'index': indices,
                    'updates': constant_minus_one
                },
                output=indices_mask,
                param_attr=None)

            constant_1 = node.layer_name + '_constant_1'
            node.fluid_code.add_layer(
                'fill_constant',
                inputs=None,
                output=constant_1,
                param_attr={
                    'shape': val_x.out_shapes[0],
                    'dtype': string(val_x.dtype),
                    'value': 1
                })
            input_out_indices_mask = node.layer_name + '_input_out_indices_mask'
            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": indices_mask,
                        "y": constant_1},
                output=input_out_indices_mask,
                param_attr=None)

            input_out_indices = node.layer_name + '_input_out_indices'
            node.fluid_code.add_layer(
                "elementwise_mul",
                inputs={"x": val_x,
                        "y": input_out_indices_mask},
                output=input_out_indices,
                param_attr=None)

            node.fluid_code.add_layer(
                "elementwise_add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
                output=node,
                param_attr=None)

812 813 814 815 816 817 818 819 820 821 822 823 824 825
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
826
    def Slice(self, node):
C
channingss 已提交
827
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
828
        starts, ends, axes, steps = None, None, None, None
829
        attr = {}
C
channingss 已提交
830 831 832
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
833
            if len(node.inputs) > 3:
C
channings 已提交
834
                axes = self.graph.get_input_node(node, idx=3, copy=True)
C
Channingss 已提交
835
                axes = _const_weight_or_none(axes, necessary=True)
R
root 已提交
836
            if len(node.inputs) > 4:
C
channings 已提交
837
                steps = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
Channingss 已提交
838
                steps = _const_weight_or_none(steps)
839 840 841 842 843 844 845
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
C
update  
Channingss 已提交
846 847
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
848 849 850 851 852 853 854 855 856 857 858 859 860 861
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
C
fix bug  
Channingss 已提交
862
                    starts_cast = starts.layer_name + '_cast'
863 864 865
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
C
fix bug  
Channingss 已提交
866
                        output=starts_cast,
867
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
868
                    attr['starts'] = starts_cast
869
                if ends.dtype != 'int32':
C
update  
Channingss 已提交
870
                    ends_cast = ends.layer_name + '_cast'
871 872 873
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
C
fix bug  
Channingss 已提交
874
                        output=ends_cast,
875
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
876
                    attr['ends'] = ends_cast
C
channingss 已提交
877 878 879 880
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
881 882 883 884
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
885

886 887
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
888

889
    @print_mapping_info
C
update  
channingss 已提交
890
    def ConstantOfShape(self, node):
C
channingss 已提交
891
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
892
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
893 894 895 896

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
897 898
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
899 900
        if len(value) == 1:
            value = value[0]
901 902 903 904 905 906 907
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
908

909
    @print_mapping_info
C
update  
channingss 已提交
910
    def Split(self, node):
C
channingss 已提交
911 912
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
913 914

        fluid_op = 'split'
C
channingss 已提交
915
        split = node.get_attr('split')
C
update  
channingss 已提交
916
        axis = node.get_attr('axis', 0)
C
channingss 已提交
917 918 919 920 921
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
922

923 924
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
925

926
    @print_mapping_info
C
update  
channingss 已提交
927
    def Reshape(self, node):
C
channingss 已提交
928 929
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
930
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
931 932 933 934 935 936 937 938 939 940
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
C
Channingss 已提交
941 942
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
C
Channingss 已提交
943 944 945 946 947 948
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': node.out_shapes[0]},
                output=node,
                param_attr=attr)
949 950 951 952 953 954 955
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
956 957 958 959 960 961 962
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape_cast,
                    output=val_shape_cast,
                    param_attr={'shape': val_shape.out_shapes[0]})
963 964 965 966 967 968 969
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
970 971 972 973 974 975 976
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape,
                    output=val_shape,
                    param_attr={'shape': val_shape.out_shapes[0]})
977 978 979 980 981 982 983 984
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
985
    def Cast(self, node):
C
channingss 已提交
986
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
987 988 989 990 991 992 993 994 995 996
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
997 998
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
999

C
Channingss 已提交
1000 1001 1002 1003 1004
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        node.fluid_code.add_layer('logical_not', inputs=val_input, output=node)

1005
    @print_mapping_info
C
update  
channingss 已提交
1006
    def AveragePool(self, node):
C
channingss 已提交
1007
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1008 1009

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1010 1011 1012 1013 1014 1015 1016 1017
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1018

C
channingss 已提交
1019 1020
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1021
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1022
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1023 1024 1025 1026 1027
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1028

C
update  
channingss 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

1039 1040
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1041

1042
    @print_mapping_info
C
update  
channingss 已提交
1043 1044
    def Concat(self, node):
        inputs = []
C
Channingss 已提交
1045
        dtypes = set()
C
update  
channingss 已提交
1046
        for i in range(len(node.layer.input)):
C
channingss 已提交
1047
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
1048 1049 1050 1051
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
C
Channingss 已提交
1052 1053 1054
                dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1055 1056
        axis = node.get_attr('axis')
        attr = {'axis': axis}
1057 1058
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
1059

1060
    @print_mapping_info
C
update  
channingss 已提交
1061
    def Flatten(self, node):
C
channingss 已提交
1062
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1063 1064
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
1065 1066
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1067

1068
    @print_mapping_info
C
update  
channingss 已提交
1069
    def Gemm(self, node):
C
channingss 已提交
1070 1071 1072
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
1086 1087 1088 1089 1090
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
1091

C
update  
channingss 已提交
1092 1093 1094 1095
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
1096 1097 1098 1099 1100
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1101
            else:
C
channingss 已提交
1102 1103
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
1104 1105 1106 1107 1108
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
1109 1110 1111

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
1112 1113 1114 1115 1116
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
1117

1118
    @print_mapping_info
C
update  
channingss 已提交
1119
    def Sum(self, node):
1120
        val_inps = node.layer.input
1121
        inputs = {
1122 1123 1124 1125
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
1126 1127
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
1128

C
channingss 已提交
1129 1130
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
1131 1132
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
1133
                "y": y,
1134
            }
1135 1136
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
1137

1138
    @print_mapping_info
C
update  
channingss 已提交
1139
    def MatMul(self, node):
C
channingss 已提交
1140 1141
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1142 1143
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
C
update  
channingss 已提交
1144
        inputs = {"x": val_x, "y": val_y}
C
Channingss 已提交
1145
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
C
Channingss 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
            y_squeeze = val_y.layer_name + '_squeeze'
            node.fluid_code.add_layer(
                "squeeze",
                inputs=val_y,
                output=y_squeeze,
                param_attr={'axes': [0]})
            inputs['y'] = y_squeeze
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
        else:
            node.fluid_code.add_layer(
                "matmul", inputs=inputs, output=node, param_attr=None)
C
update  
channingss 已提交
1158

1159
    @print_mapping_info
C
update  
channingss 已提交
1160
    def BatchNormalization(self, node):
C
channingss 已提交
1161 1162 1163 1164 1165
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1175 1176
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1177 1178 1179 1180
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1181
            "is_test": True,
C
update  
channingss 已提交
1182 1183 1184 1185
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1186
            "use_global_stats": spatial,
C
update  
channingss 已提交
1187 1188
            "name": string(node.layer_name)
        }
1189 1190
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1191

1192
    @print_mapping_info
C
update  
channingss 已提交
1193
    def Transpose(self, node):
C
channingss 已提交
1194
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1195 1196
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1197 1198
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1199

1200
    @print_mapping_info
C
update  
channingss 已提交
1201
    def Relu(self, node):
C
channingss 已提交
1202
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1203
        attr = {"name": string(node.layer_name)}
1204 1205
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1206

1207
    @print_mapping_info
C
update  
channingss 已提交
1208
    def PRelu(self, node):
C
channingss 已提交
1209 1210
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1211

C
channingss 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1222 1223
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1224

1225
    @print_mapping_info
C
update  
channingss 已提交
1226
    def Squeeze(self, node):
C
channingss 已提交
1227 1228 1229
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1230 1231 1232 1233 1234 1235 1236 1237 1238
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1239

1240
    @print_mapping_info
C
channings 已提交
1241 1242 1243
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1244 1245 1246 1247 1248 1249 1250
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1262
    @print_mapping_info
C
channings 已提交
1263 1264 1265 1266
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1267

C
channings 已提交
1268
        not_condition = condition.layer_name + '_not'
1269 1270 1271 1272 1273
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1274
        cast_not_condition = not_condition + '_cast'
1275 1276 1277 1278 1279
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1280
        cast_condition = condition.layer_name + '_cast'
1281 1282 1283 1284 1285
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1286
        mul_val_x = val_x.layer_name + '_mul'
1287 1288 1289 1290 1291 1292
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
C
channings 已提交
1293
        mul_val_y = val_y.layer_name + '_mul'
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1309 1310
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1330
    def Identity(self, node):
C
channingss 已提交
1331
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1332
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1333

1334
    @print_mapping_info
C
channings 已提交
1335 1336 1337 1338
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1339

1340 1341
        if repeats is None:
            repeats = val_repeats.layer_name
J
jiangjiajun 已提交
1342 1343 1344
            if val_repeats.dtype != 'int32':
                attr = {"dtype": string("int32")}
                node.fluid_code.add_layer(
C
Channingss 已提交
1345 1346
                    "cast",
                    inputs=repeats,
J
jiangjiajun 已提交
1347 1348
                    output="{}.tmp".format(repeats),
                    param_attr=attr)
J
jiangjiajun 已提交
1349 1350
                repeats = "{}.tmp".format(repeats)

1351
        elif isinstance(repeats, int):
C
channings 已提交
1352
            repeats = [repeats]
R
root 已提交
1353

C
channings 已提交
1354
        attr = {
R
root 已提交
1355
            'expand_times': repeats,
C
channings 已提交
1356 1357
            "name": string(node.layer_name),
        }
1358 1359
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1360

1361
    @print_mapping_info
C
update  
channingss 已提交
1362
    def MaxPool(self, node):
C
channingss 已提交
1363
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1364
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1376

C
channingss 已提交
1377 1378
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1379
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1380
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1381 1382 1383 1384 1385
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1386

C
update  
channingss 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1396 1397
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1398

C
channings 已提交
1399
    def _global_pool(self, node):
C
channingss 已提交
1400
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1401
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1402
        fluid_op = 'pool2d'
C
channings 已提交
1403 1404 1405 1406 1407 1408
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1409
        attr = {
C
channings 已提交
1410
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1411 1412 1413
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1414 1415
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1416

1417
    @print_mapping_info
C
channings 已提交
1418 1419
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1420

1421
    @print_mapping_info
C
channings 已提交
1422 1423
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1424

1425
    @print_mapping_info
C
update  
channingss 已提交
1426
    def Conv(self, node):
C
channingss 已提交
1427 1428
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1429 1430 1431 1432 1433 1434
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1435
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1436 1437 1438
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1439
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1440 1441
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1442
        num_out_channels = val_w.out_shapes[0][0]
C
update  
channingss 已提交
1443 1444 1445
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1446 1447 1448
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1449

C
channingss 已提交
1450
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1451 1452
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1453
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1454 1455 1456 1457 1458
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1474 1475
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1476

1477
    @print_mapping_info
C
channingss 已提交
1478
    def ConvTranspose(self, node):
C
channingss 已提交
1479 1480
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1481
        val_b = None
R
root 已提交
1482
        if len(node.layer.input) > 2:
C
channingss 已提交
1483 1484
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1485 1486 1487 1488 1489 1490
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1491
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1492 1493 1494
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1495
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1496 1497
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1498 1499 1500 1501 1502
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1503 1504 1505 1506

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1507

1508 1509
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1510
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1511 1512
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1523
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1524 1525
            'name': string(node.layer_name),
        }
1526 1527
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)