caffe_op_mapper.py 39.0 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
SunAhong1993 已提交
14 15

import numbers
S
SunAhong1993 已提交
16
import copy
S
SunAhong1993 已提交
17
import numpy as np
J
jiangjiajun 已提交
18 19
from x2paddle.decoder.caffe_decoder import CaffeGraph
from x2paddle.core.op_mapper import OpMapper
S
SunAhong1993 已提交
20
from x2paddle.core.util import *
S
SunAhong1993 已提交
21 22 23
from x2paddle.op_mapper.static.caffe2paddle import caffe_shape
from x2paddle.op_mapper.static.caffe2paddle.caffe_custom_layer import *
from x2paddle.core.program import PaddleGraph 
S
SunAhong1993 已提交
24 25


J
jiangjiajun 已提交
26
class CaffeOpMapper(OpMapper):
S
SunAhong1993 已提交
27
    directly_map_ops = {
S
SunAhong1993 已提交
28
        'AbsVal': 'paddle.abs',
S
SunAhong1993 已提交
29
        'Sigmoid': 'fluid.layers.sigmoid',
S
SunAhong1993 已提交
30
        'TanH': 'paddle.tanh',
S
SunAhong1993 已提交
31 32
    }

J
jiangjiajun 已提交
33 34 35
    def __init__(self, decoder):
        super(CaffeOpMapper, self).__init__()
        self.graph = decoder.caffe_graph
S
SunAhong1993 已提交
36
        self.weights = dict()
J
jiangjiajun 已提交
37
        resolver = decoder.resolver
J
jiangjiajun 已提交
38
        self.used_custom_layers = {}
S
SunAhong1993 已提交
39 40 41
        self.pd_graph = PaddleGraph(parent_layer=None, graph_type="static")
        self.pd_graph.inputs = self.graph.input_nodes
        self.pd_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
42 43 44 45

        print("Total nodes: {}".format(len(self.graph.topo_sort)))
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
S
SunAhong1993 已提交
46 47
            if node.layer_type == 'DepthwiseConvolution':
                node.layer_type = 'ConvolutionDepthwise'
S
SunAhong1993 已提交
48 49
            op = node.layer_type
            if hasattr(self, op):
50
                self.set_node_shape(node)
J
jiangjiajun 已提交
51 52
                func = getattr(self, op)
                func(node)
S
SunAhong1993 已提交
53
            elif op in custom_layers:
S
SunAhong1993 已提交
54
                self.set_node_shape(node, is_fluid_op=False)
S
SunAhong1993 已提交
55
                self.deal_custom_layer(node)
S
SunAhong1993 已提交
56 57 58
            elif op in self.directly_map_ops:
                self.set_node_shape(node)
                self.directly_map(node)
S
SunAhong1993 已提交
59
            else:
S
SunAhong1993 已提交
60 61
                raise Exception(
                    "The op {} in model is not supported yet.".format(op))
S
SunAhong1993 已提交
62 63 64
        self.pd_graph.set_parameters(self.weights)
        self.pd_graph.set_custom_func(self.used_custom_layers)

S
SunAhong1993 已提交
65

J
jiangjiajun 已提交
66 67 68
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
S
SunAhong1993 已提交
69
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
70 71 72 73 74 75 76 77 78 79 80
            op = node.layer_type
            if not hasattr(self, op) and op not in custom_layers:
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False
S
SunAhong1993 已提交
81

S
SunAhong1993 已提交
82
    def set_node_shape(self, node, is_fluid_op=True):
S
SunAhong1993 已提交
83 84 85 86 87 88 89
        inputs = node.inputs
        input_shape = []
        for i, nm in enumerate(inputs):
            last_node = self.graph.get_node(nm)
            tmp = node.layer.bottom[i]
            idx = list(last_node.layer.top).index(tmp)
            input_shape.append(last_node.output_shape[idx])
90 91 92 93

        node.input_shape = input_shape

        func_name = 'shape_' + node.layer_type.lower()
S
SunAhong1993 已提交
94
        if is_fluid_op:
95 96
            node.output_shape = getattr(caffe_shape, func_name)(node.layer,
                                                                input_shape)
S
SunAhong1993 已提交
97 98
        else:
            node.output_shape = compute_output_shape(node)
S
SunAhong1993 已提交
99 100 101

    def adjust_parameters(self, node):
        data = node.data
S
SunAhong1993 已提交
102 103 104 105 106 107 108 109
        # When using the protobuf-backend, each parameter initially has four dimensions.
        # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
        # This implementation takes care of the common cases. However, it does leave the
        # potential for future issues.
        # The Caffe-backend does not suffer from this problem.
        data = list(data)

        squeeze_indices = [1]  # Squeeze biases.
S
SunAhong1993 已提交
110
        if node.layer_type == 'InnerProduct':
S
SunAhong1993 已提交
111 112 113 114 115
            squeeze_indices.append(0)  # Squeeze FC.

        for idx in squeeze_indices:
            if idx >= len(data):
                continue
S
SunAhong1993 已提交
116

S
SunAhong1993 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
            d = data[idx]
            assert len(
                d.shape
            ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
                str(d.shape))

            shape_old = d.shape
            sq_axis = None
            if idx == 0:
                sq_axis = (0, 1)
            elif idx == 1:
                sq_axis = (0, 1, 2)
            else:
                continue

            data[idx] = np.squeeze(d, axis=sq_axis)
            shape_new = data[idx].shape
        return data
S
SunAhong1993 已提交
135

S
SunAhong1993 已提交
136
    def get_kernel_parameters(self, kind, params):
S
SunAhong1993 已提交
137
        assert kind in ['Convolution', 'Pooling', 'Deconvolution']
S
SunAhong1993 已提交
138 139 140
        [k_h, k_w] = [1, 1]
        if isinstance(params.kernel_size, numbers.Number):
            [k_h, k_w] = [params.kernel_size] * 2
S
SunAhong1993 已提交
141
        elif len(params.kernel_size) > 0:
C
channingss 已提交
142 143
            k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[
                0]
S
SunAhong1993 已提交
144
            k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
S
SunAhong1993 已提交
145
                len(params.kernel_size) - 1]
S
SunAhong1993 已提交
146 147 148
        elif params.kernel_h > 0 or params.kernel_w > 0:
            k_h = params.kernel_h
            k_w = params.kernel_w
S
SunAhong1993 已提交
149 150 151
        [s_h, s_w] = [1, 1]
        if isinstance(params.stride, numbers.Number):
            [s_h, s_w] = [params.stride] * 2
S
SunAhong1993 已提交
152
        elif len(params.stride) > 0:
S
SunAhong1993 已提交
153
            s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
J
jiangjiajun 已提交
154 155
            s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
                params.stride) - 1]
S
SunAhong1993 已提交
156 157 158
        elif params.stride_h > 0 or params.stride_w > 0:
            s_h = params.stride_h
            s_w = params.stride_w
S
SunAhong1993 已提交
159 160 161
        [p_h, p_w] = [0, 0]
        if isinstance(params.pad, numbers.Number):
            [p_h, p_w] = [params.pad] * 2
S
SunAhong1993 已提交
162
        elif len(params.pad) > 0:
S
SunAhong1993 已提交
163
            p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
J
jiangjiajun 已提交
164 165
            p_w = params.pad_w if params.pad_w > 0 else params.pad[len(
                params.pad) - 1]
S
SunAhong1993 已提交
166 167 168
        elif params.pad_h > 0 or params.pad_w > 0:
            p_h = params.pad_h
            p_w = params.pad_w
S
SunAhong1993 已提交
169 170 171
        dila_h = dila_w = 1
        group = 1
        c_o = 1
172
        if kind in ['Convolution', 'Deconvolution']:
S
SunAhong1993 已提交
173 174 175 176 177 178 179 180 181 182
            c_o = params.num_output
            dila_len = len(params.dilation)
            if dila_len == 2:
                dila_h = params.dilation[0]
                dila_w = params.dilation[1]
            elif dila_len == 1:
                dila_h = dila_w = params.dilation[0]
            else:
                assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                    dila_len)
S
SunAhong1993 已提交
183 184
        if kind in ['Convolution', 'Deconvolution']:
            group = params.group
S
SunAhong1993 已提交
185 186 187 188 189 190
        kernel = [k_h, k_w]
        stride = [s_h, s_w]
        pad = [p_h, p_w]
        dilation = [dila_h, dila_w]
        return c_o, kernel, stride, pad, dilation, group

S
SunAhong1993 已提交
191 192 193 194 195 196
    def get_input_name(self, node):
        if hasattr(node, "index"):
            return node.layer_name + "[{}]".format(node.index)
        else:
            return node.layer_name

S
SunAhong1993 已提交
197 198 199
    def Input(self, node):
        shape = list(node.layer.input_param.shape[0].dim)[1:]
        dtype = 'float32'
S
SunAhong1993 已提交
200 201 202 203
        layer_attrs = {
            "dtype": string(dtype),
            "shape": [-1] + shape,
            "name": string(node.layer_name)
S
SunAhong1993 已提交
204
        }
S
SunAhong1993 已提交
205
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
206
            kernel="fluid.data",
S
SunAhong1993 已提交
207 208 209
            inputs={},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
210

S
SunAhong1993 已提交
211 212 213 214 215
    def Convolution(self, node):
        data = node.data
        params = node.layer.convolution_param
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
S
SunAhong1993 已提交
216 217
        if data is None:
            data = []
C
channingss 已提交
218
            print(
S
SunAhong1993 已提交
219
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
C
channingss 已提交
220
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
221 222
            input_c = node.input_shape[0][1]
            output_c = channel
C
channingss 已提交
223
            data.append(
J
jiangjiajun 已提交
224 225
                np.zeros([output_c, input_c, kernel[0], kernel[1]]).astype(
                    'float32'))
S
0.8.4  
sunyanfang01 已提交
226
            data.append(np.zeros([output_c, ]).astype('float32'))
S
SunAhong1993 已提交
227 228
        else:
            data = self.adjust_parameters(node)
S
SunAhong1993 已提交
229
        self.weights[node.layer_name + '_weights'] = data[0]
S
SunAhong1993 已提交
230
        if len(data) == 2:
S
SunAhong1993 已提交
231
            self.weights[node.layer_name + '_bias'] = data[1]
S
SunAhong1993 已提交
232 233
        assert len(node.inputs
                   ) == 1, 'The count of Convolution node\'s input is not 1.'
S
SunAhong1993 已提交
234
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
235
        layer_attrs = {
S
SunAhong1993 已提交
236 237
            'filter_size': kernel,
            'num_filters': channel,
J
jiangjiajun 已提交
238 239 240 241 242
            'stride': stride,
            'padding': pad,
            'dilation': dilation,
            'groups': group,
            'name': string(node.layer_name),
S
SunAhong1993 已提交
243 244 245
            'param_attr': string(node.layer_name + '_weights'),
            'bias_attr': False
            if len(data) == 1 else string(node.layer_name + '_bias'),
S
SunAhong1993 已提交
246
        }
S
SunAhong1993 已提交
247
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
248 249
            kernel="fluid.layers.conv2d",
            inputs={"input": self.get_input_name(input)},
S
SunAhong1993 已提交
250 251 252
            outputs=[node.layer_name],
            **layer_attrs)        
        
S
SunAhong1993 已提交
253 254 255 256 257
    def Deconvolution(self, node):
        data = node.data
        params = node.layer.convolution_param
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
S
SunAhong1993 已提交
258 259
        if data is None:
            data = []
C
channingss 已提交
260 261 262
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
263 264
            input_c = node.input_shape[0][1]
            output_c = channel
C
channingss 已提交
265
            data.append(
J
jiangjiajun 已提交
266 267 268
                np.zeros([output_c, input_c, kernel[0], kernel[1]]).astype(
                    'float32'))
            data.append(np.zeros([output_c, ]).astype('float32'))
S
SunAhong1993 已提交
269 270 271 272 273
        else:
            data = self.adjust_parameters(node)
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
S
SunAhong1993 已提交
274 275
        assert len(node.inputs
                   ) == 1, 'The count of Deconvolution node\'s input is not 1.'
S
SunAhong1993 已提交
276
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
277
        layer_attrs = {
J
jiangjiajun 已提交
278
            'output_size': None,
S
SunAhong1993 已提交
279 280
            'filter_size': kernel,
            'num_filters': channel,
J
jiangjiajun 已提交
281 282 283 284 285
            'stride': stride,
            'padding': pad,
            'dilation': dilation,
            'groups': group,
            'name': string(node.layer_name),
S
SunAhong1993 已提交
286 287
            'param_attr': string(node.layer_name + '_weights'),
            'bias_attr': False
J
jiangjiajun 已提交
288
            if len(data) == 1 else string(node.layer_name + '_bias')
S
SunAhong1993 已提交
289
        }
S
SunAhong1993 已提交
290
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
291 292
            kernel="fluid.layers.conv2d_transpose",
            inputs={"input": self.get_input_name(input)},
S
SunAhong1993 已提交
293 294
            outputs=[node.layer_name],
            **layer_attrs)    
S
SunAhong1993 已提交
295 296 297

    def Pooling(self, node):
        params = node.layer.pooling_param
S
SunAhong1993 已提交
298
        ceil_mode = getattr(params, 'ceil_mode', True)
S
SunAhong1993 已提交
299 300
        global_pool = getattr(params, 'global_pooling', False)
        kernel_default = [1, 1]
S
SunAhong1993 已提交
301
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
S
SunAhong1993 已提交
302
            node.layer_type, params)
S
SunAhong1993 已提交
303 304 305 306
        if params.pool == 0:
            pool_type = 'max'
        else:
            pool_type = 'avg'
S
SunAhong1993 已提交
307 308
        assert len(
            node.inputs) == 1, 'The count of Pooling node\'s input is not 1.'
S
SunAhong1993 已提交
309
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
310
        layer_attrs = {
S
SunAhong1993 已提交
311 312 313
            'pool_size': kernel,
            'pool_stride': stride,
            'pool_padding': pad,
S
SunAhong1993 已提交
314
            'ceil_mode': ceil_mode,
S
SunAhong1993 已提交
315 316 317 318
            'pool_type': string(pool_type),
            'exclusive': False,
            'global_pooling': global_pool,
            'name': string(node.layer_name)
S
SunAhong1993 已提交
319
        }
S
SunAhong1993 已提交
320 321 322 323 324
        self.pd_graph.add_layer(
            kernel="fluid.layers.pool2d",
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)    
S
SunAhong1993 已提交
325 326 327 328 329 330 331 332 333 334 335

    def LRN(self, node):
        assert len(node.inputs) == 1, 'The count of LRN node\'s input is not 1.'
        params = node.layer.lrn_param
        # The window size must be an odd value. For a window
        # size of (2*n+1), Paddle defines depth_radius = n.
        assert params.local_size % 2 == 1
        # Caffe scales by (alpha/(2*n+1)), whereas Paddle
        # just scales by alpha (as does Krizhevsky's paper).
        # We'll account for that here.
        alpha = params.alpha / float(params.local_size)
S
SunAhong1993 已提交
336
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
337
        layer_attrs = {
S
SunAhong1993 已提交
338
            'n': params.local_size,
S
SunAhong1993 已提交
339
            'k': params.k,
S
SunAhong1993 已提交
340 341 342 343
            'alpha': alpha,
            'beta': params.beta,
            'name': string(node.layer_name)
        }
S
SunAhong1993 已提交
344 345 346 347 348
        self.pd_graph.add_layer(
            kernel="fluid.layers.lrn",
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
349 350 351

    def InnerProduct(self, node):
        data = node.data
S
SunAhong1993 已提交
352 353
        params = node.layer.inner_product_param
        if data is None:
C
channingss 已提交
354 355 356
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0.'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
357 358 359
            input_c = node.input_shape[0][1]
            output_c = params.num_output
            data = []
C
channingss 已提交
360
            data.append(
J
jiangjiajun 已提交
361 362
                np.zeros([input_c, output_c]).astype('float32').astype(
                    'float32'))
C
channingss 已提交
363 364
            data.append(
                np.zeros([output_c]).astype('float32').astype('float32'))
S
SunAhong1993 已提交
365 366 367 368 369 370 371 372 373 374
        else:
            data = self.adjust_parameters(node)
            # Reshape the parameters to Paddle's ordering
            transpose_order = (1, 0)
            w = data[0]
            fc_shape = w.shape
            output_channels = fc_shape[0]
            w = w.reshape((output_channels, -1))
            w = w.transpose(transpose_order)
            data[0] = w
S
SunAhong1993 已提交
375

S
SunAhong1993 已提交
376 377 378 379 380
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
        assert len(node.inputs
                   ) == 1, 'The count of InnerProduct node\'s input is not 1.'
S
SunAhong1993 已提交
381
        #params = node.layer.inner_product_param
S
SunAhong1993 已提交
382 383
        assert params.axis == 1
        assert params.bias_term == True
S
SunAhong1993 已提交
384
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
385
        layer_attrs = {
J
jiangjiajun 已提交
386 387 388 389 390 391
            'size': params.num_output,
            'name': string(node.layer_name),
            'act': None,
            'param_attr': string(node.layer_name + '_weights'),
            'bias_attr': False
            if len(data) == 1 else string(node.layer_name + '_bias')
S
SunAhong1993 已提交
392
        }
S
SunAhong1993 已提交
393
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
394
            kernel="fluid.layers.fc",
S
SunAhong1993 已提交
395 396 397
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
398 399 400 401

    def Softmax(self, node):
        assert len(
            node.inputs) == 1, 'The count of Softmax node\'s input is not 1.'
S
SunAhong1993 已提交
402
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
403 404 405 406 407
        params = node.layer.softmax_param
        axis = params.axis
        shape = node.input_shape[0]
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
S
SunAhong1993 已提交
408 409 410 411 412 413
        layer_attrs = {'axis': axis, 'name': string(node.layer_name + '_softmax')}
        self.pd_graph.add_layer(
            kernel="paddle.nn.functional.softmax",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
414 415 416 417 418

    def Slice(self, node):
        assert len(
            node.inputs) == 1, 'The count of Slice node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
419
        top_len = len(node.layer.top)
S
SunAhong1993 已提交
420 421
        params = node.layer.slice_param
        axis = params.axis
S
SunAhong1993 已提交
422 423 424
        slice_dim = params.slice_dim
        if slice_dim != 1 and axis == 1:
            axis = slice_dim
S
SunAhong1993 已提交
425 426 427 428
        output_shape = node.output_shape
        sections_list = []
        for s in output_shape:
            sections_list.append(s[axis])
S
SunAhong1993 已提交
429
        layer_attrs = {
S
SunAhong1993 已提交
430 431 432 433
            'num_or_sections': sections_list,
            'dim': axis,
            'name': string(node.layer_name)
        }
S
SunAhong1993 已提交
434
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
435
            kernel="fluid.layers.split",
S
SunAhong1993 已提交
436 437 438
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
C
channingss 已提交
439

S
SunAhong1993 已提交
440 441
    def Concat(self, node):
        assert len(
S
SunAhong1993 已提交
442
            node.inputs
S
sunyanfang01 已提交
443
        ) >= 1, 'The count of Concat node\'s input is not more than 1.'
S
SunAhong1993 已提交
444
        inputs_list = []
S
SunAhong1993 已提交
445 446
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
447
            inputs_list.append(self.get_input_name(input))
S
SunAhong1993 已提交
448 449
        params = node.layer.concat_param
        axis = params.axis
S
SunAhong1993 已提交
450 451 452 453 454 455
        layer_attrs = {'axis': axis, 'name': string(node.layer_name)}
        self.pd_graph.add_layer(
            kernel="paddle.concat",
            inputs={"x": inputs_list},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
456

457 458 459 460 461 462 463 464 465 466 467 468 469
    def ReLU(self, node):
        """

        :param node:
        :return:
        """
        assert len(
            node.inputs) == 1, 'The count of ReLU node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)

        params = node.layer.relu_param
        if params.HasField('negative_slope') and params.negative_slope != 0:
            negative_slope = float(params.negative_slope)
S
SunAhong1993 已提交
470
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
471
                kernel="fluid.layers.leaky_relu",
S
SunAhong1993 已提交
472 473
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name],
S
SunAhong1993 已提交
474
                alpha=negative_slope)
475
        else:
S
SunAhong1993 已提交
476
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
477
                kernel="fluid.layers.relu",
S
SunAhong1993 已提交
478 479
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name])
480

S
SunAhong1993 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493
    def PReLU(self, node):
        assert len(
            node.inputs) == 1, 'The count of PReLU node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
        if mode_bool:
            mode = 'all'
        else:
            mode = 'channel'
        data = node.data
        assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
494 495
        self.weights[node.layer_name + '_weights'] = data[0]
        layer_attrs = {
S
SunAhong1993 已提交
496
            'mode': string(mode),
S
SunAhong1993 已提交
497 498
            'param_attr': string(node.layer_name + '_weights'),
            'name': string(node.layer_name)
S
SunAhong1993 已提交
499
        }
S
SunAhong1993 已提交
500
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
501
            kernel="fluid.layers.prelu",
S
SunAhong1993 已提交
502 503 504
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
505 506 507 508

    def Accuracy(self, node):
        assert len(
            node.inputs) == 2, 'The count of Accuracy node\'s input is not 2.'
S
SunAhong1993 已提交
509 510
        inputs_dict = dict()
        for i, shape in enumerate(node.input_shape):
S
SunAhong1993 已提交
511
            if shape[1] == 1:
S
SunAhong1993 已提交
512
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
513
                inputs_dict["label"] = self.get_input_name(input)
S
SunAhong1993 已提交
514
            else:
S
SunAhong1993 已提交
515
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
516
                inputs_dict["input"] = self.get_input_name(input)
S
SunAhong1993 已提交
517 518 519 520 521 522
        params = node.layer.accuracy_param
        top_k = params.top_k
        axis = params.axis
        ignore_label = params.ignore_label
        assert axis == 1, 'PaddlePaddle can not support the situation when the axis is not 1.'
        assert not ignore_label >= 0, 'PaddlePaddle can not support the situation when the model has ignore label.'
S
SunAhong1993 已提交
523
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
524
            kernel="fluid.layers.accuracy",
S
SunAhong1993 已提交
525 526 527
            inputs=inputs_dict,
            outputs=[node.layer_name],
            k=top_k)
S
SunAhong1993 已提交
528 529 530 531 532 533 534

    def Eltwise(self, node):
        assert len(
            node.inputs) == 2, 'The count of TanH node\'s input is not 2.'
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
S
SunAhong1993 已提交
535 536 537 538
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        inputs.append(input0)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        inputs.append(input1)
S
SunAhong1993 已提交
539
        if mode == 0:
S
SunAhong1993 已提交
540
            inputs_dict = {}
S
SunAhong1993 已提交
541 542 543
            inputs_dict['x'] = self.get_input_name(inputs[0])
            inputs_dict['y'] = self.get_input_name(inputs[1])
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
544
                kernel="fluid.layers.elementwise_mul",
J
jiangjiajun 已提交
545
                inputs=inputs_dict,
S
SunAhong1993 已提交
546
                outputs=[node.layer_name])
S
SunAhong1993 已提交
547 548 549 550
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
                input1_name = self.get_input_name(inputs[0])
S
SunAhong1993 已提交
551
                layer_attrs = {
S
SunAhong1993 已提交
552
                    'shape': [1],
S
SunAhong1993 已提交
553
                    'value': coeff[0],
S
SunAhong1993 已提交
554 555
                    'dtype': '{}.dtype'.format(input1_name)
                }
S
SunAhong1993 已提交
556
                self.pd_graph.add_layer(
S
SunAhong1993 已提交
557
                    kernel="fluid.layers.fill_constant",
S
SunAhong1993 已提交
558 559 560 561
                    inputs={},
                    outputs=["{}_const1".format(node.layer_name)],
                    **layer_attrs)
                self.pd_graph.add_layer(
S
SunAhong1993 已提交
562
                    kernel="fluid.layers.elementwise_mul",
S
SunAhong1993 已提交
563 564 565
                    inputs={"x": input1_name,
                            "y": "{}_const1".format(node.layer_name)},
                    outputs=["{}_mul1".format(node.layer_name)])
S
SunAhong1993 已提交
566
                input2_name = self.get_input_name(inputs[1])
S
SunAhong1993 已提交
567
                layer_attrs = {
S
SunAhong1993 已提交
568
                    'shape': [1],
S
SunAhong1993 已提交
569
                    'value': coeff[1],
S
SunAhong1993 已提交
570 571
                    'dtype': '{}.dtype'.format(input2_name)
                }
S
SunAhong1993 已提交
572
                self.pd_graph.add_layer(
S
SunAhong1993 已提交
573
                    kernel="fluid.layers.fill_constant",
S
SunAhong1993 已提交
574 575 576 577
                    inputs={},
                    outputs=["{}_const2".format(node.layer_name)],
                    **layer_attrs)
                self.pd_graph.add_layer(
S
SunAhong1993 已提交
578
                    kernel="fluid.layers.elementwise_mul",
S
SunAhong1993 已提交
579 580 581 582
                    inputs={"x": input2_name,
                            "y": "{}_const2".format(node.layer_name)},
                    outputs=["{}_mul2".format(node.layer_name)])
                self.pd_graph.add_layer(
S
SunAhong1993 已提交
583
                    kernel="fluid.layers.elementwise_add",
S
SunAhong1993 已提交
584 585 586
                    inputs={"x": "{}_mul1".format(node.layer_name),
                            "y": "{}_mul2".format(node.layer_name)},
                    outputs=[node.layer_name])
S
SunAhong1993 已提交
587
            else:
S
SunAhong1993 已提交
588
                inputs_dict = {}
S
SunAhong1993 已提交
589 590 591
                inputs_dict['x'] = self.get_input_name(inputs[0])
                inputs_dict['y'] = self.get_input_name(inputs[1])
                self.pd_graph.add_layer(
S
SunAhong1993 已提交
592
                    kernel="fluid.layers.elementwise_add",
J
jiangjiajun 已提交
593
                    inputs=inputs_dict,
S
SunAhong1993 已提交
594
                    outputs=[node.layer_name])
S
SunAhong1993 已提交
595
        else:
S
SunAhong1993 已提交
596
            inputs_dict = {}
S
SunAhong1993 已提交
597 598 599
            inputs_dict['x'] = self.get_input_name(inputs[0])
            inputs_dict['y'] = self.get_input_name(inputs[1])
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
600
                    kernel="fluid.layers.elementwise_max",
S
SunAhong1993 已提交
601 602
                    inputs=inputs_dict,
                    outputs=[node.layer_name])
S
SunAhong1993 已提交
603 604

    def BatchNorm(self, node):
C
channingss 已提交
605 606
        assert len(
            node.inputs) == 1, 'The count of BatchNorm node\'s input is not 1.'
S
SunAhong1993 已提交
607 608
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.batch_norm_param
S
SunAhong1993 已提交
609
        if hasattr(params, 'eps'):
S
SunAhong1993 已提交
610 611 612
            eps = params.eps
        else:
            eps = 1e-5
S
SunAhong1993 已提交
613
        if node.data is None or len(node.data) != 3:
C
channingss 已提交
614 615 616
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
617
            input_c = node.input_shape[0][1]
J
jiangjiajun 已提交
618 619
            mean = np.zeros([input_c, ]).astype('float32')
            variance = np.zeros([input_c, ]).astype('float32')
S
SunAhong1993 已提交
620 621
            scale = 0
        else:
S
SunAhong1993 已提交
622

S
SunAhong1993 已提交
623
            node.data = [np.squeeze(i).astype('float32') for i in node.data]
S
SunAhong1993 已提交
624
            mean, variance, scale = node.data
S
SunAhong1993 已提交
625 626 627 628 629 630
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.weights[node.layer_name + '_mean'] = mean
        self.weights[node.layer_name + '_variance'] = variance
S
SunAhong1993 已提交
631
        layer_attrs = {
632 633 634 635 636 637 638 639
            'is_test': True,
            'param_attr': None,
            'bias_attr': None,
            'moving_mean_name': string(node.layer_name + '_mean'),
            'moving_variance_name': string(node.layer_name + '_variance'),
            'epsilon': eps,
            'name': string(node.layer_name)
        }
S
SunAhong1993 已提交
640
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
641
            kernel="fluid.layers.batch_norm",
S
SunAhong1993 已提交
642 643 644
            inputs={"input": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
645 646

    def Scale(self, node):
S
SunAhong1993 已提交
647
        if node.data is None:
C
channingss 已提交
648 649 650
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
651
            input_c = node.input_shape[0][1]
C
channingss 已提交
652 653 654 655 656 657
            self.weights[node.layer_name + '_scale'] = np.zeros([
                input_c,
            ]).astype('float32')
            self.weights[node.layer_name + '_offset'] = np.zeros([
                input_c,
            ]).astype('float32')
S
SunAhong1993 已提交
658
        else:
J
jiangjiajun 已提交
659 660 661 662
            self.weights[node.layer_name + '_scale'] = np.squeeze(node.data[
                0]).astype('float32')
            self.weights[node.layer_name + '_offset'] = np.squeeze(node.data[
                1]).astype('float32')
663 664 665 666 667 668 669 670 671 672 673
        params = node.layer.scale_param
        axis = params.axis
        num_axes = params.num_axes
        inputs = []
        if len(node.inputs) == 2:
            # for two tensor, here resets axis to 1. Maybe there is a bug for unkown case.
            axis = 1
            bias_shape = node.input_shape[0][axis:axis + num_axes]
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
            input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
            inputs_dict = {}
S
SunAhong1993 已提交
674 675 676
            inputs_dict['x'] = self.get_input_name(input0)
            inputs_dict['y'] = self.get_input_name(input1)
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
677
                kernel="fluid.layers.elementwise_mul",
J
jiangjiajun 已提交
678
                inputs=inputs_dict,
S
SunAhong1993 已提交
679 680
                outputs=["{}_mul".format(node.layer_name)],
                axis=axis)
S
SunAhong1993 已提交
681
        else:
682 683
            bias_shape = node.input_shape[0][axis:axis + num_axes]
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
684
            input0_name = self.get_input_name(input0)
S
SunAhong1993 已提交
685
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
686
                kernel="fluid.ParamAttr",
S
SunAhong1993 已提交
687 688 689 690
                inputs={},
                outputs=["{}_scale".format(node.layer_name)],
                name = string("{}_scale".format(node.layer_name)))
            layer_attrs = {
691 692 693
                'dtype': '{}.dtype'.format(input0_name),
                'shape': bias_shape,
                'name': string(node.layer_name + '_cparam1'),
S
SunAhong1993 已提交
694 695 696
                'is_bias': True,
                'default_initializer': 'Constant(value=1.0)'
            }
S
SunAhong1993 已提交
697
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
698
                kernel="fluid.layers.create_parameter",
S
SunAhong1993 已提交
699 700 701
                inputs={"attr": node.layer_name + '_scale',},
                outputs=["{}_cparam1".format(node.layer_name)],
                **layer_attrs)
702
            inputs_dict = {}
S
SunAhong1993 已提交
703 704 705
            inputs_dict['x'] = self.get_input_name(input0)
            inputs_dict['y'] = "{}_cparam1".format(node.layer_name)
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
706
                kernel="fluid.layers.elementwise_mul",
J
jiangjiajun 已提交
707
                inputs=inputs_dict,
S
SunAhong1993 已提交
708 709
                outputs=["{}_mul".format(node.layer_name)],
                axis=axis)
710 711
        scale_shape = bias_shape
        input0_name = self.get_input_name(input0)
S
SunAhong1993 已提交
712
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
713
            kernel="fluid.ParamAttr",
S
SunAhong1993 已提交
714 715 716 717
            inputs={},
            outputs=["{}_offset".format(node.layer_name)],
            name = string("{}_offset".format(node.layer_name)))
        layer_attrs = {
718 719 720 721 722 723
            'dtype': '{}.dtype'.format(input0_name),
            'shape': scale_shape,
            'name': string(node.layer_name + '_cparam2'),
            'is_bias': True,
            'default_initializer': 'Constant(value=1.0)'
        }
S
SunAhong1993 已提交
724
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
725
            kernel="fluid.layers.create_parameter",
S
SunAhong1993 已提交
726 727 728 729 730 731 732
            inputs={"attr": node.layer_name + '_offset'},
            outputs=["{}_cparam2".format(node.layer_name)],
            **layer_attrs)
        inputs_dict = {}
        inputs_dict['x'] = "{}_mul".format(node.layer_name)
        inputs_dict['y'] = "{}_cparam2".format(node.layer_name)
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
733
            kernel="fluid.layers.elementwise_add",
S
SunAhong1993 已提交
734 735 736 737
            inputs=inputs_dict,
            outputs=[node.layer_name],
            axis=axis)
        
S
SunAhong1993 已提交
738 739 740 741

    def Reshape(self, node):
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        top_count = len(input.layer.top)
742
        is_inplace = False if top_count == 1 else True
S
SunAhong1993 已提交
743
        output_shape = node.output_shape[0]
S
SunAhong1993 已提交
744
        layer_attrs = {
S
SunAhong1993 已提交
745 746
            'shape': output_shape,
            'inplace': is_inplace,
747
            'act': None,
S
SunAhong1993 已提交
748 749
            'name': string(node.layer_name)
        }
S
SunAhong1993 已提交
750
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
751
            kernel="fluid.layers.reshape",
S
SunAhong1993 已提交
752 753 754
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, 'The count of ArgMax node\'s input and output is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        input_shape = node.input_shape[0]
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
        axis = parmas.axis if hasattr(params, axis) else -1
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
S
SunAhong1993 已提交
770
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
771
                kernel="fluid.layers.topk",
S
SunAhong1993 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
                inputs={"input": self.get_input_name(input)},
                outputs=["{}_topk_var".format(node.layer_name),
                         "{}_index_var".format(node.layer_name)],
                k=top_k)
            self.pd_graph.add_layer(
                kernel="paddle.cast",
                inputs={"x": "{}_topk_var".format(node.layer_name)},
                outputs=["{}_topk_var".format(node.layer_name)],
                dtype="{}_topk_var.dtype".format(node.layer_name))
            self.pd_graph.add_layer(
                kernel="paddle.concat",
                inputs={"x": "[{}_topk_var, {}_index_var]".format(node.layer_name,
                                                                  node.layer_name)},
                outputs=[node.layer_name],
                axis=axis)
S
SunAhong1993 已提交
787
        else:
S
SunAhong1993 已提交
788
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
789
                kernel="fluid.layers.topk",
S
SunAhong1993 已提交
790 791 792
                inputs={"input": self.get_input_name(input)},
                outputs=["_", node.layer_name],
                k=top_k)
S
SunAhong1993 已提交
793 794 795 796 797 798 799

    def Crop(self, node):
        assert len(
            node.inputs) == 2, 'The count of Crop node\'s input is not 2.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        example = self.graph.get_bottom_node(node, idx=1, copy=True)
        params = node.layer.crop_param
S
sonixixi 已提交
800
        axis = params.axis
S
SunAhong1993 已提交
801 802 803 804
        input_shape = node.input_shape[0]
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
S
sonixixi 已提交
805
        if hasattr(params, "offset") and len(params.offset) > 0:
S
SunAhong1993 已提交
806
            offset = list(params.offset)
J
jiangjiajun 已提交
807 808 809
            assert (len(input_shape) - axis
                    ) == len(offset), "invalid offset[%s] in crop layer" % (
                        str(offset))
S
SunAhong1993 已提交
810
            offset_real = [0] * axis + offset
S
SunAhong1993 已提交
811 812 813
        layer_attrs = {"offsets": list(offset_real), 
                       "shape": node.input_shape[1]}
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
814
            kernel="fluid.layers.crop_tensor",
S
SunAhong1993 已提交
815 816 817 818
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
        
S
SunAhong1993 已提交
819
    def Flatten(self, node):
S
SunAhong1993 已提交
820
        assert len(
J
jiangjiajun 已提交
821 822
            node.
            inputs) == 1, 'The count of DetectionOutput node\'s input is not 1.'
S
SunAhong1993 已提交
823
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
824
        self.pd_graph.add_layer(
S
SunAhong1993 已提交
825
            kernel="fluid.layers.reshape",
S
SunAhong1993 已提交
826 827 828 829
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            shape = node.output_shape[0])
        
S
SunAhong1993 已提交
830 831 832 833 834 835 836 837
    def Power(self, node):
        assert len(
            node.inputs) == 1, 'The count of Permute node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.power_param
        power = params.power
        scale = params.scale
        shift = params.shift
S
SunAhong1993 已提交
838
        layer_attrs = {
S
SunAhong1993 已提交
839 840 841 842 843
            'scale': scale,
            'bias': shift,
            'bias_after_scale': True,
            'name': string(node.layer_name + '_scale')
        }
S
SunAhong1993 已提交
844 845 846 847 848 849 850 851 852 853
        self.pd_graph.add_layer(
            kernel="paddle.scale",
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name],
            **layer_attrs)
        self.pd_graph.add_layer(
            kernel="paddle.pow",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            factor=power)
S
SunAhong1993 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, 'The count of Reduction node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
        input_len = len(node.input_shape[0])
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        if operation == 1:  ## operation = SUM
S
SunAhong1993 已提交
870
            layer_attrs = {
S
SunAhong1993 已提交
871 872 873 874
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
S
SunAhong1993 已提交
875
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
876
                kernel="fluid.layers.reduce_sum",
S
SunAhong1993 已提交
877 878 879
                inputs={"input": self.get_input_name(input)},
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
880
        elif operation == 2:  ## operation = ASUM
S
SunAhong1993 已提交
881 882 883 884 885
            self.pd_graph.add_layer(
                kernel="paddle.abs",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name])
            layer_attrs = {
S
SunAhong1993 已提交
886 887 888 889
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
S
SunAhong1993 已提交
890
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
891
                kernel="fluid.layers.reduce_sum",
S
SunAhong1993 已提交
892 893 894
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
895
        elif operation == 3:  ## operation = SUMSQ
S
SunAhong1993 已提交
896 897 898 899 900 901
            self.pd_graph.add_layer(
                kernel="paddle.pow",
                inputs={"x": self.get_input_name(input)},
                outputs=[node.layer_name],
                factor=2.0)
            layer_attrs = {
S
SunAhong1993 已提交
902 903 904 905
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
S
SunAhong1993 已提交
906
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
907
                kernel="fluid.layers.reduce_sum",
S
SunAhong1993 已提交
908 909 910
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
911
        else:  ## operation = MEAN
S
SunAhong1993 已提交
912
            layer_attrs = {
S
SunAhong1993 已提交
913 914 915 916
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
S
SunAhong1993 已提交
917
            self.pd_graph.add_layer(
S
SunAhong1993 已提交
918
                kernel="fluid.layers.reduce_mean",
S
SunAhong1993 已提交
919 920 921 922 923 924 925 926
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        self.pd_graph.add_layer(
            kernel="paddle.scale",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            scale=coeff)
S
SunAhong1993 已提交
927

S
SunAhong1993 已提交
928 929 930 931 932 933 934 935
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        kwargs['input_shape'] = node.input_shape
        data = node.data
S
SunAhong1993 已提交
936 937 938 939 940
        if data is not None:
            data = self.adjust_parameters(node)
            weights_name = deal_weights(node)
            for i in range(len(data)):
                self.weights[weights_name[i]] = data[i]
S
SunAhong1993 已提交
941
        inputs_list = []
S
SunAhong1993 已提交
942 943
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
944 945
            if i == 1 and op == 'DetectionOutput':
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
946 947
                while input is not None \
                      and input.layer_type != 'Softmax' \
S
SunAhong1993 已提交
948
                      and input.layer_type != 'Sigmoid':
S
SunAhong1993 已提交
949 950 951
                    input = self.graph.get_bottom_node(input, idx=0, copy=True)
                assert input is not None, 'This kind of DetectionOutput is not supported!'
                input = self.graph.get_bottom_node(input, idx=0, copy=True)
S
SunAhong1993 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964
            inputs_list.append(self.get_input_name(input))
        kwargs_tmp = copy.deepcopy(kwargs)
        for k, v in kwargs_tmp.items():
            if str(type(v)) == "<class 'caffe_pb2.NonMaximumSuppressionParameter'>":
                kwargs[k] = dict()
                kwargs[k]["nms_threshold"] = v.nms_threshold
                kwargs[k]["top_k"] = v.top_k
                kwargs[k]["eta"] = v.eta
        self.pd_graph.add_layer(
            kernel="combination_layer:{}".format(op),
            inputs={"inputs": inputs_list},
            outputs=[node.layer_name],
            **kwargs)
J
jiangjiajun 已提交
965 966
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
S
SunAhong1993 已提交
967 968 969 970 971

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
972 973 974 975 976
        self.pd_graph.add_layer(
            kernel=op_info,
            inputs={"x": self.get_input_name(input)},
            outputs=[node.layer_name])