提交 73830eb2 编写于 作者: J jiangjiajun

modify code format

上级 0edcc783
......@@ -5,12 +5,14 @@ model_dir = sys.argv[1]
new_model_dir = sys.argv[2]
exe = fluid.Executor(fluid.CPUPlace())
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(dirname=model_dir, executor=exe)
fetch_targets] = fluid.io.load_inference_model(
dirname=model_dir, executor=exe)
print(feed_target_names)
fluid.io.save_inference_model(dirname=new_model_dir,
feeded_var_names=feed_target_names,
target_vars=fetch_targets,
executor=exe,
main_program=inference_program,
params_filename="__params__")
fluid.io.save_inference_model(
dirname=new_model_dir,
feeded_var_names=feed_target_names,
target_vars=fetch_targets,
executor=exe,
main_program=inference_program,
params_filename="__params__")
......@@ -46,8 +46,8 @@ class Layer(object):
for input in self.inputs:
if isinstance(input, GraphNode):
if hasattr(input, "index"):
in_list += (input.layer_name +
"[{}]".format(input.index) + ", ")
in_list += (input.layer_name + "[{}]".format(
input.index) + ", ")
else:
in_list += (input.layer_name + ", ")
elif isinstance(input, six.string_types):
......@@ -71,8 +71,8 @@ class Layer(object):
layer_code = layer_code + key + "={}, ".format(input)
elif isinstance(self.inputs, GraphNode):
if hasattr(self.inputs, "index"):
layer_code += (self.inputs.layer_name +
"[{}]".format(self.inputs.index))
layer_code += (
self.inputs.layer_name + "[{}]".format(self.inputs.index))
else:
layer_code += (self.inputs.layer_name)
if self.op != "=":
......
......@@ -64,10 +64,8 @@ def run_net(param_dir="./"):
b = os.path.exists(os.path.join(param_dir, var.name))
return b
fluid.io.load_vars(exe,
param_dir,
fluid.default_main_program(),
predicate=if_exist)
fluid.io.load_vars(
exe, param_dir, fluid.default_main_program(), predicate=if_exist)
class OpMapper(object):
......@@ -98,8 +96,8 @@ class OpMapper(object):
def add_codes(self, codes, indent=0):
if isinstance(codes, list):
for code in codes:
self.paddle_codes += (self.tab * indent + code.strip('\n') +
'\n')
self.paddle_codes += (
self.tab * indent + code.strip('\n') + '\n')
elif isinstance(codes, str):
self.paddle_codes += (self.tab * indent + codes.strip('\n') + '\n')
else:
......@@ -135,24 +133,25 @@ class OpMapper(object):
os.path.join(os.path.join(py_code_dir, var.name)))
return b
fluid.io.load_vars(exe,
py_code_dir,
fluid.default_main_program(),
predicate=if_exist)
fluid.io.load_vars(
exe,
py_code_dir,
fluid.default_main_program(),
predicate=if_exist)
if params_merge:
fluid.io.save_inference_model(dirname=os.path.join(
save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename="__params__")
fluid.io.save_inference_model(
dirname=os.path.join(save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename="__params__")
else:
fluid.io.save_inference_model(dirname=os.path.join(
save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename=None)
fluid.io.save_inference_model(
dirname=os.path.join(save_dir, "inference_model"),
feeded_var_names=input_names,
target_vars=outputs,
executor=exe,
params_filename=None)
except:
raise Exception(
"Paddle code was saved in {}/model.py, but seems there's wrong exist, please check model.py manually."
......
......@@ -34,8 +34,8 @@ class CaffeResolver(object):
if not os.path.isfile(self.caffe_proto):
raise Exception(
"The .py file compiled by caffe.proto is not exist.")
(filepath,
tempfilename) = os.path.split(os.path.abspath(self.caffe_proto))
(filepath, tempfilename) = os.path.split(
os.path.abspath(self.caffe_proto))
(filename, extension) = os.path.splitext(tempfilename)
sys.path.append(filepath)
out = __import__(filename)
......@@ -49,13 +49,13 @@ class CaffeResolver(object):
class CaffeGraphNode(GraphNode):
def __init__(self, layer, type_str, layer_name=None):
if layer_name is None:
super(CaffeGraphNode,
self).__init__(layer,
layer.name.replace('/', '_').replace('-', '_'))
super(CaffeGraphNode, self).__init__(
layer,
layer.name.replace('/', '_').replace('-', '_'))
else:
super(CaffeGraphNode,
self).__init__(layer,
layer_name.replace('/', '_').replace('-', '_'))
super(CaffeGraphNode, self).__init__(
layer,
layer_name.replace('/', '_').replace('-', '_'))
self.layer_type = type_str
self.fluid_code = FluidCode()
self.data = None
......@@ -268,8 +268,8 @@ class CaffeDecoder(object):
c_i = blob.channels
h = blob.height
w = blob.width
data = np.asarray(list(blob.data),
dtype=np.float32).reshape(c_o, c_i, h, w)
data = np.asarray(
list(blob.data), dtype=np.float32).reshape(c_o, c_i, h, w)
transformed.append(data)
return transformed
此差异已折叠。
......@@ -71,9 +71,8 @@ class ONNXGraphNode(GraphNode):
if attr.type == onnx.AttributeProto.TENSOR:
dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
data = attr.t.raw_data
value = np.frombuffer(data,
dtype=dtype,
count=(len(data) // dtype.itemsize))
value = np.frombuffer(
data, dtype=dtype, count=(len(data) // dtype.itemsize))
elif attr.type == onnx.AttributeProto.STRING:
value = attr.s
value = value.decode() if isinstance(value, bytes) else value
......@@ -205,9 +204,8 @@ class ONNXGraph(Graph):
self.node_map[name].weight = weight
self.node_map[name].embeded_as = []
else:
self.node_map[name] = ONNXGraphDataNode(initializer,
layer_name=name,
is_global_input=False)
self.node_map[name] = ONNXGraphDataNode(
initializer, layer_name=name, is_global_input=False)
self.node_map[name].weight = weight
self.node_map[name].embeded_as = []
......
......@@ -120,13 +120,13 @@ class TFGraph(Graph):
def build(self):
for layer in self.model.node:
self.node_map[layer.name.replace('/', '_').replace(
'-', '_')] = TFGraphNode(layer, data_format=self.tf_data_format)
'-', '_')] = TFGraphNode(
layer, data_format=self.tf_data_format)
for layer_name, node in self.node_map.items():
for in_node in node.layer.input:
in_node = in_node.replace('/',
'_').replace('-',
'_').replace('^', '')
in_node = in_node.replace('/', '_').replace('-', '_').replace(
'^', '')
if in_node not in self.node_map:
if in_node.strip().split(':')[0] in self.node_map:
self.connect(in_node.strip().split(':')[0], layer_name)
......@@ -390,10 +390,10 @@ class TFDecoder(object):
shape=shape,
name="x2paddle_{}".format(layer.name))
except:
x2paddle_input = tf.placeholder(dtype=dtype,
shape=shape,
name="x2paddle_{}".format(
layer.name))
x2paddle_input = tf.placeholder(
dtype=dtype,
shape=shape,
name="x2paddle_{}".format(layer.name))
input_map["{}:0".format(layer.name)] = x2paddle_input
if shape.count(None) > 0:
......
......@@ -120,18 +120,19 @@ def convolutiondepthwise_layer(inputs,
dila_len)
c_in = input_shape[0][1]
c_out = num_output if num_output is not None else input_shape[0][1]
group = int(c_in / (c_in / c_out)) if c_in > c_out else int(c_in /
(c_out / c_in))
out = fluid.layers.conv2d(input,
dilation=[dila_h, dila_w],
filter_size=[k_h, k_w],
stride=[s_h, s_w],
padding=[p_h, p_w],
groups=group,
num_filters=c_out,
param_attr=name + '_weights',
bias_attr=name + '_bias',
name=name)
group = int(c_in / (c_in / c_out)) if c_in > c_out else int(
c_in / (c_out / c_in))
out = fluid.layers.conv2d(
input,
dilation=[dila_h, dila_w],
filter_size=[k_h, k_w],
stride=[s_h, s_w],
padding=[p_h, p_w],
groups=group,
num_filters=c_out,
param_attr=name + '_weights',
bias_attr=name + '_bias',
name=name)
return out
......@@ -142,7 +143,8 @@ def convolutiondepthwise_weights(name, data=None):
return weights_name
register(kind='ConvolutionDepthwise',
shape=convolutiondepthwise_shape,
layer=convolutiondepthwise_layer,
weights=convolutiondepthwise_weights)
register(
kind='ConvolutionDepthwise',
shape=convolutiondepthwise_shape,
layer=convolutiondepthwise_layer,
weights=convolutiondepthwise_weights)
......@@ -37,8 +37,8 @@ def detectionoutput_layer(inputs,
pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4])
mbox_loc = inputs[0]
mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[-1, pb.shape[0], 4])
mbox_conf_flatten = fluid.layers.reshape(x=mbox_conf_flatten,
shape=[0, pb.shape[0], -1])
mbox_conf_flatten = fluid.layers.reshape(
x=mbox_conf_flatten, shape=[0, pb.shape[0], -1])
default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
fields = ['eta', 'top_k', 'nms_threshold']
......@@ -64,7 +64,8 @@ def detectionoutput_weights(name, data=None):
return weights_name
register(kind='DetectionOutput',
shape=detectionoutput_shape,
layer=detectionoutput_layer,
weights=detectionoutput_weights)
register(
kind='DetectionOutput',
shape=detectionoutput_shape,
layer=detectionoutput_layer,
weights=detectionoutput_weights)
......@@ -20,9 +20,8 @@ def normalize_layer(inputs,
attr=name + '_scale')
scale_param = fluid.layers.reshape(x=scale_param, \
shape=[1] if channel_shared else [input_shape[0][1]])
out = fluid.layers.elementwise_mul(x=l2_norm,
y=scale_param,
axis=-1 if channel_shared else 1)
out = fluid.layers.elementwise_mul(
x=l2_norm, y=scale_param, axis=-1 if channel_shared else 1)
return out
......@@ -31,7 +30,8 @@ def normalize_weights(name, data=None):
return weights_name
register(kind='Normalize',
shape=normalize_shape,
layer=normalize_layer,
weights=normalize_weights)
register(
kind='Normalize',
shape=normalize_shape,
layer=normalize_layer,
weights=normalize_weights)
......@@ -23,7 +23,8 @@ def permute_weights(name, data=None):
return weights_name
register(kind='Permute',
shape=permute_shape,
layer=permute_layer,
weights=permute_weights)
register(
kind='Permute',
shape=permute_shape,
layer=permute_layer,
weights=permute_weights)
......@@ -30,18 +30,19 @@ def priorbox_layer(inputs,
steps = tuple(step) if type(step) is list or type(step) is tuple else (step,
step)
box, variance_ = fluid.layers.prior_box(input,
image,
min_sizes=min_size,
max_sizes=max_size,
aspect_ratios=aspect_ratio,
variance=variance,
flip=flip,
clip=clip,
steps=steps,
offset=offset,
name=name,
min_max_aspect_ratios_order=True)
box, variance_ = fluid.layers.prior_box(
input,
image,
min_sizes=min_size,
max_sizes=max_size,
aspect_ratios=aspect_ratio,
variance=variance,
flip=flip,
clip=clip,
steps=steps,
offset=offset,
name=name,
min_max_aspect_ratios_order=True)
box = fluid.layers.reshape(box, [1, 1, -1])
variance_ = fluid.layers.reshape(variance_, [1, 1, -1])
out = fluid.layers.concat([box, variance_], axis=1)
......@@ -53,7 +54,8 @@ def priorbox_weights(name, data=None):
return weights_name
register(kind='PriorBox',
shape=priorbox_shape,
layer=priorbox_layer,
weights=priorbox_weights)
register(
kind='PriorBox',
shape=priorbox_shape,
layer=priorbox_layer,
weights=priorbox_weights)
......@@ -21,11 +21,12 @@ def roipooling_layer(inputs,
input = inputs[0]
roi = inputs[1]
roi = fluid.layers.slice(roi, axes=[1], starts=[1], ends=[5])
out = fluid.layers.roi_pool(input,
roi,
pooled_height=pooled_h,
pooled_width=pooled_w,
spatial_scale=spatial_scale)
out = fluid.layers.roi_pool(
input,
roi,
pooled_height=pooled_h,
pooled_width=pooled_w,
spatial_scale=spatial_scale)
return out
......@@ -34,7 +35,8 @@ def roipooling_weights(name, data=None):
return weights_name
register(kind='ROIPooling',
shape=roipooling_shape,
layer=roipooling_layer,
weights=roipooling_weights)
register(
kind='ROIPooling',
shape=roipooling_shape,
layer=roipooling_layer,
weights=roipooling_weights)
......@@ -30,11 +30,12 @@ def select_layer(inputs,
out = []
for i in range(len(slice_point)):
out.append(
fluid.layers.slice(input,
axes=[axis],
starts=[slice_point[i]],
ends=[slice_point[i + 1]],
name=name + '_' + str(i)))
fluid.layers.slice(
input,
axes=[axis],
starts=[slice_point[i]],
ends=[slice_point[i + 1]],
name=name + '_' + str(i)))
if i == len(slice_point) - 2:
break
return out
......@@ -45,7 +46,8 @@ def select_weights(name, data=None):
return weights_name
register(kind='Select',
shape=select_shape,
layer=select_layer,
weights=select_weights)
register(
kind='Select',
shape=select_shape,
layer=select_layer,
weights=select_weights)
......@@ -17,7 +17,8 @@ def shufflechannel_weights(name, data=None):
return weights_name
register(kind='ShuffleChannel',
shape=shufflechannel_shape,
layer=shufflechannel_layer,
weights=shufflechannel_weights)
register(
kind='ShuffleChannel',
shape=shufflechannel_shape,
layer=shufflechannel_layer,
weights=shufflechannel_weights)
......@@ -67,10 +67,10 @@ def get_strided_kernel_output_shape(params, input_shape, round_func):
i_w = input_shape[3]
dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
params)
o_h = (i_h + 2 * pad_h - (dila_h *
(kernel_h - 1) + 1)) / float(stride_h) + 1
o_w = (i_w + 2 * pad_w - (dila_w *
(kernel_w - 1) + 1)) / float(stride_w) + 1
o_h = (i_h + 2 * pad_h -
(dila_h * (kernel_h - 1) + 1)) / float(stride_h) + 1
o_w = (i_w + 2 * pad_w -
(dila_w * (kernel_w - 1) + 1)) / float(stride_w) + 1
o_h = int(round_func(o_h))
o_w = int(round_func(o_w))
has_c_o = hasattr(params, 'num_output')
......
......@@ -24,21 +24,18 @@ def InstanceNormalization_layer(inputs, name=None):
epsilon = 1e-5
input_ = inputs[0]
mean = fluid.layers.reduce_mean(input_, dim=[2, 3], keep_dim=True)
var = fluid.layers.reduce_mean(fluid.layers.square(input_ - mean),
dim=[2, 3],
keep_dim=True)
var = fluid.layers.reduce_mean(
fluid.layers.square(input_ - mean), dim=[2, 3], keep_dim=True)
if name is not None:
scale_name = name + "_scale"
offset_name = name + "_offset"
scale_param = inputs[1]
offset_param = inputs[2]
scale = fluid.layers.create_parameter(name=scale_param.name,
shape=input_.shape[1:2],
dtype="float32")
offset = fluid.layers.create_parameter(name=offset_param.name,
shape=input_.shape[1:2],
dtype="float32")
scale = fluid.layers.create_parameter(
name=scale_param.name, shape=input_.shape[1:2], dtype="float32")
offset = fluid.layers.create_parameter(
name=offset_param.name, shape=input_.shape[1:2], dtype="float32")
tmp = fluid.layers.elementwise_mul(x=(input_ - mean), y=scale, axis=1)
tmp = tmp / fluid.layers.sqrt(var + epsilon)
......@@ -51,8 +48,9 @@ def InstanceNormalization_weights(name, data=None):
return weights_name
register(kind='InstanceNormalization',
shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer,
child_func=None,
weights=InstanceNormalization_weights)
register(
kind='InstanceNormalization',
shape=InstanceNormalization_shape,
layer=InstanceNormalization_layer,
child_func=None,
weights=InstanceNormalization_weights)
此差异已折叠。
......@@ -41,10 +41,11 @@ class CaffeOptimizer(object):
if is_delete_node:
parent_node.fluid_code.clear()
node.fluid_code.clear()
node.fluid_code.add_layer("batch_norm",
inputs=input,
output=node,
param_attr=parent_param_attr)
node.fluid_code.add_layer(
"batch_norm",
inputs=input,
output=node,
param_attr=parent_param_attr)
def merge_op_activation(self):
for node_name in self.graph.topo_sort:
......@@ -62,7 +63,8 @@ class CaffeOptimizer(object):
if is_delete_node:
parent_node.fluid_code.clear()
node.fluid_code.clear()
node.fluid_code.add_layer(op,
inputs=input,
output=node,
param_attr=parent_param_attr)
node.fluid_code.add_layer(
op,
inputs=input,
output=node,
param_attr=parent_param_attr)
......@@ -554,10 +554,11 @@ class TFOptimizer(object):
node.fluid_code.layers[0].param_attr["shape"] = shape
node.fluid_code.layers[0].output = "nhwc_" + name
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs="nhwc_" + name,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"transpose",
inputs="nhwc_" + name,
output=node,
param_attr=attr)
self.graph.input_nodes[i] = "nhwc_" + name
for i, name in enumerate(self.graph.output_nodes):
node = self.graph.get_node(name)
......@@ -972,10 +973,8 @@ class TFOptimizer(object):
"bias_after_scale": True,
"act": act
}
node.fluid_code.add_layer("scale",
inputs=in_node,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"scale", inputs=in_node, output=node, param_attr=attr)
del self.graph.node_map[in_nodes0[0].layer_name]
del self.graph.node_map[in_nodes0[1].layer_name]
......@@ -1055,29 +1054,32 @@ class TFOptimizer(object):
"shape": [channel],
"name": string(node.layer_name + "_scale")
}
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node.layer_name + "_scale",
param_attr=attr)
node.fluid_code.add_layer(
"create_parameter",
inputs=None,
output=node.layer_name + "_scale",
param_attr=attr)
attr = {
"dtype": string(scale.dtype),
"shape": [channel],
"name": string(node.layer_name + "_bias")
}
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node.layer_name + "_bias",
param_attr=attr)
node.fluid_code.add_layer(
"create_parameter",
inputs=None,
output=node.layer_name + "_bias",
param_attr=attr)
inputs = {
"x": in_node,
"scale": node.layer_name + "_scale",
"bias": node.layer_name + "_bias"
}
attr = {"act": act}
node.fluid_code.add_layer("affine_channel",
inputs=inputs,
output=node,
param_attr=attr)
node.fluid_code.add_layer(
"affine_channel",
inputs=inputs,
output=node,
param_attr=attr)
del self.graph.node_map[in_nodes0[0].layer_name]
del self.graph.node_map[in_nodes0[1].layer_name]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册