base_component.py 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2020 VisualDL Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================
from visualdl.proto.record_pb2 import Record
import numpy as np
from PIL import Image


def scalar(tag, value, step, walltime=None):
    """Package data to one scalar.

    Args:
        tag (string): Data identifier
        value (float): Value of scalar
        step (int): Step of scalar
        walltime (int): Wall time of scalar

    Return:
        Package with format of record_pb2.Record
    """
    value = float(value)
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime, value=value)
    ])


走神的阿圆's avatar
走神的阿圆 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def meta_data(tag='meta_data_tag', display_name="", step=0, walltime=None):
    """Package data to one meta_data.

    Meta data is info for one record file, include `display_name` etc.

    Args:
        tag (string): Data identifier
        display_name (string): Replace
        step (int): Step of scalar
        walltime (int): Wall time of scalar

    Return:
        Package with format of record_pb2.Record
    """
    meta = Record.MetaData(display_name=display_name)
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime,
                     meta_data=meta)
    ])


59 60 61 62 63 64 65 66 67
def imgarray2bytes(np_array):
    """Convert image ndarray to bytes.

    Args:
        np_array (numpy.ndarray): Array to converte.

    Returns:
        Binary bytes of np_array.
    """
68 69 70 71 72 73 74 75 76 77 78 79
    try:
        import cv2

        np_array = cv2.cvtColor(np_array, cv2.COLOR_BGR2RGB)
        ret, buf = cv2.imencode(".png", np_array)
        img_bin = Image.fromarray(np.uint8(buf)).tobytes("raw")
    except ImportError:
        import io
        im = Image.fromarray(np_array)
        with io.BytesIO() as fp:
            im.save(fp, format='png')
            img_bin = fp.getvalue()
80 81 82
    return img_bin


走神的阿圆's avatar
走神的阿圆 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
def make_grid(I, ncols=8):
    assert isinstance(
        I, np.ndarray), 'plugin error, should pass numpy array here'
    if I.shape[1] == 1:
        I = np.concatenate([I, I, I], 1)
    assert I.ndim == 4 and I.shape[1] == 3 or I.shape[1] == 4
    nimg = I.shape[0]
    H = I.shape[2]
    W = I.shape[3]
    ncols = min(nimg, ncols)
    nrows = int(np.ceil(float(nimg) / ncols))
    canvas = np.zeros((I.shape[1], H * nrows, W * ncols), dtype=I.dtype)
    i = 0
    for y in range(nrows):
        for x in range(ncols):
            if i >= nimg:
                break
            canvas[:, y * H:(y + 1) * H, x * W:(x + 1) * W] = I[i]
            i = i + 1
    return canvas


def convert_to_HWC(tensor, input_format):
    """Convert `NCHW`, `HWC`, `HW` to `HWC`

    Args:
        tensor (numpy.ndarray): Value of image
        input_format (string): Format of image

    Return:
        Image of format `HWC`.
    """
    assert(len(set(input_format)) == len(input_format)), "You can not use the same dimension shordhand twice. \
        input_format: {}".format(input_format)
    assert(len(tensor.shape) == len(input_format)), "size of input tensor and input format are different. \
        tensor shape: {}, input_format: {}".format(tensor.shape, input_format)
    input_format = input_format.upper()

    if len(input_format) == 4:
        index = [input_format.find(c) for c in 'NCHW']
        tensor_NCHW = tensor.transpose(index)
        tensor_CHW = make_grid(tensor_NCHW)
        return tensor_CHW.transpose(1, 2, 0)

    if len(input_format) == 3:
        index = [input_format.find(c) for c in 'HWC']
        tensor_HWC = tensor.transpose(index)
        if tensor_HWC.shape[2] == 1:
            tensor_HWC = np.concatenate([tensor_HWC, tensor_HWC, tensor_HWC], 2)
        return tensor_HWC

    if len(input_format) == 2:
        index = [input_format.find(c) for c in 'HW']
        tensor = tensor.transpose(index)
        tensor = np.stack([tensor, tensor, tensor], 2)
        return tensor


def image(tag, image_array, step, walltime=None, dataformats="HWC"):
142 143 144 145 146 147 148
    """Package data to one image.

    Args:
        tag (string): Data identifier
        image_array (numpy.ndarray): Value of iamge
        step (int): Step of image
        walltime (int): Wall time of image
149
        dataformats (string): Format of image
150 151 152 153

    Return:
        Package with format of record_pb2.Record
    """
走神的阿圆's avatar
走神的阿圆 已提交
154
    image_array = convert_to_HWC(image_array, dataformats)
155 156 157 158 159 160 161
    image_bytes = imgarray2bytes(image_array)
    image = Record.Image(encoded_image_string=image_bytes)
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime, image=image)
    ])


162
def embedding(tag, labels, hot_vectors, step, labels_meta=None, walltime=None):
163 164 165 166
    """Package data to one embedding.

    Args:
        tag (string): Data identifier
167
        labels (list): A list of labels.
168 169 170 171 172 173 174 175 176 177
        hot_vectors (numpy.array or list): A matrix which each row is
            feature of labels.
        step (int): Step of embeddings.
        walltime (int): Wall time of embeddings.

    Return:
        Package with format of record_pb2.Record
    """
    embeddings = Record.Embeddings()

178 179 180 181 182 183 184 185 186 187 188 189
    if labels_meta:
        embeddings.label_meta.extend(labels_meta)

    if isinstance(labels[0], list):
        temp = []
        for index in range(len(labels[0])):
            temp.append([label[index] for label in labels])
        labels = temp
    for label, hot_vector in zip(labels, hot_vectors):
        if not isinstance(label, list):
            label = [label]
        embeddings.embeddings.append(Record.Embedding(label=label, vectors=hot_vector))
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, embeddings=embeddings)
    ])


def audio(tag, audio_array, sample_rate, step, walltime):
    """Package data to one audio.

    Args:
        tag (string): Data identifier
        audio_array (numpy.ndarray or list): audio represented by a numpy.array
        sample_rate (int): Sample rate of audio
        step (int): Step of audio
        walltime (int): Wall time of audio

    Return:
        Package with format of record_pb2.Record
    """
走神的阿圆's avatar
走神的阿圆 已提交
210 211 212 213 214 215 216 217
    audio_array = audio_array.squeeze()
    if abs(audio_array).max() > 1:
        print('warning: audio amplitude out of range, auto clipped.')
        audio_array = audio_array.clip(-1, 1)
    assert (audio_array.ndim == 1), 'input tensor should be 1 dimensional.'

    audio_array = [int(32767.0 * x) for x in audio_array]

218 219
    import io
    import wave
走神的阿圆's avatar
走神的阿圆 已提交
220
    import struct
221 222 223 224 225 226

    fio = io.BytesIO()
    wave_writer = wave.open(fio, 'wb')
    wave_writer.setnchannels(1)
    wave_writer.setsampwidth(2)
    wave_writer.setframerate(sample_rate)
走神的阿圆's avatar
走神的阿圆 已提交
227 228 229
    audio_enc = b''
    audio_enc += struct.pack("<" + "h" * len(audio_array), *audio_array)
    wave_writer.writeframes(audio_enc)
230 231 232 233 234 235 236 237 238 239 240 241
    wave_writer.close()
    audio_string = fio.getvalue()
    fio.close()
    audio_data = Record.Audio(
        sample_rate=sample_rate,
        num_channels=1,
        length_frames=len(audio_array),
        encoded_audio_string=audio_string,
        content_type='audio/wav')
    return Record(values=[
        Record.Value(id=step, tag=tag, timestamp=walltime, audio=audio_data)
    ])
242 243 244


def histogram(tag, hist, bin_edges, step, walltime):
走神的阿圆's avatar
走神的阿圆 已提交
245 246 247 248 249 250 251 252 253 254 255 256
    """Package data to one histogram.

    Args:
        tag (string): Data identifier
        hist (numpy.ndarray or list): The values of the histogram
        bin_edges (numpy.ndarray or list): The bin edges
        step (int): Step of histogram
        walltime (int): Wall time of histogram

    Return:
        Package with format of record_pb2.Record
    """
257 258 259 260 261
    histogram = Record.Histogram(hist=hist, bin_edges=bin_edges)
    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, histogram=histogram)
    ])
走神的阿圆's avatar
走神的阿圆 已提交
262 263 264 265 266 267 268 269 270 271 272 273


def compute_curve(labels, predictions, num_thresholds=None, weights=None):
    """ Compute precision-recall curve data by labels and predictions.

    Args:
        labels (numpy.ndarray or list): Binary labels for each element.
        predictions (numpy.ndarray or list): The probability that an element be
            classified as true.
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.
    """
274 275 276 277
    if isinstance(labels, list):
        labels = np.array(labels)
    if isinstance(predictions, list):
        predictions = np.array(predictions)
走神的阿圆's avatar
走神的阿圆 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    _MINIMUM_COUNT = 1e-7

    if weights is None:
        weights = 1.0

    bucket_indices = np.int32(np.floor(predictions * (num_thresholds - 1)))
    float_labels = labels.astype(np.float)
    histogram_range = (0, num_thresholds - 1)
    tp_buckets, _ = np.histogram(
        bucket_indices,
        bins=num_thresholds,
        range=histogram_range,
        weights=float_labels * weights)
    fp_buckets, _ = np.histogram(
        bucket_indices,
        bins=num_thresholds,
        range=histogram_range,
        weights=(1.0 - float_labels) * weights)

    # Obtain the reverse cumulative sum.
    tp = np.cumsum(tp_buckets[::-1])[::-1]
    fp = np.cumsum(fp_buckets[::-1])[::-1]
    tn = fp[0] - fp
    fn = tp[0] - tp
    precision = tp / np.maximum(_MINIMUM_COUNT, tp + fp)
    recall = tp / np.maximum(_MINIMUM_COUNT, tp + fn)
    data = {
        'tp': tp.astype(int).tolist(),
        'fp': fp.astype(int).tolist(),
        'tn': tn.astype(int).tolist(),
        'fn': fn.astype(int).tolist(),
        'precision': precision.astype(float).tolist(),
        'recall': recall.astype(float).tolist()
    }
    return data


def pr_curve(tag, labels, predictions, step, walltime, num_thresholds=127,
             weights=None):
    """Package data to one pr_curve.

    Args:
        tag (string): Data identifier
        labels (numpy.ndarray or list): Binary labels for each element.
        predictions (numpy.ndarray or list): The probability that an element be
            classified as true.
        step (int): Step of pr_curve
        walltime (int): Wall time of pr_curve
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.

    Return:
        Package with format of record_pb2.Record
    """
    num_thresholds = min(num_thresholds, 127)
    prcurve_map = compute_curve(labels, predictions, num_thresholds, weights)

    return pr_curve_raw(tag=tag,
                        tp=prcurve_map['tp'],
                        fp=prcurve_map['fp'],
                        tn=prcurve_map['tn'],
                        fn=prcurve_map['fn'],
                        precision=prcurve_map['precision'],
                        recall=prcurve_map['recall'],
                        step=step,
                        walltime=walltime)


def pr_curve_raw(tag, tp, fp, tn, fn, precision, recall, step, walltime):
    """Package raw data to one pr_curve.

    Args:
        tag (string): Data identifier
        tp (list): True Positive.
        fp (list): False Positive.
        tn (list): True Negative.
        fn (list): False Negative.
        precision (list): The fraction of retrieved documents that are relevant
            to the query:
        recall (list): The fraction of the relevant documents that are
            successfully retrieved.
        step (int): Step of pr_curve
        walltime (int): Wall time of pr_curve
        num_thresholds (int): Number of thresholds used to draw the curve.
        weights (float): Multiple of data to display on the curve.

    Return:
        Package with format of record_pb2.Record
    """

    """
    if isinstance(tp, np.ndarray):
        tp = tp.astype(int).tolist()
    if isinstance(fp, np.ndarray):
        fp = fp.astype(int).tolist()
    if isinstance(tn, np.ndarray):
        tn = tn.astype(int).tolist()
    if isinstance(fn, np.ndarray):
        fn = fn.astype(int).tolist()
    if isinstance(precision, np.ndarray):
        precision = precision.astype(int).tolist()
    if isinstance(recall, np.ndarray):
        recall = recall.astype(int).tolist()
    """
    prcurve = Record.PRCurve(TP=tp,
                             FP=fp,
                             TN=tn,
                             FN=fn,
                             precision=precision,
                             recall=recall)
    return Record(values=[
        Record.Value(
            id=step, tag=tag, timestamp=walltime, pr_curve=prcurve)
    ])